Local Cohomology and Degree Complexes of Monomial Ideals
This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | O'Rourke, Jonathan L |
description | This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2311137252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311137252</sourcerecordid><originalsourceid>FETCH-proquest_journals_23111372523</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8MlPTsxRcM7PyM_Nz8lPr1RIzEtRcElNL0pNBYrmFuSkVqQWK-SnKfjm5-XnZgLVeqakJuYU8zCwpgGpVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjY0NDQGWmhkTJwqAALwNXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311137252</pqid></control><display><type>article</type><title>Local Cohomology and Degree Complexes of Monomial Ideals</title><source>Free E- Journals</source><creator>O'Rourke, Jonathan L</creator><creatorcontrib>O'Rourke, Jonathan L</creatorcontrib><description>This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Quotients ; Rings (mathematics)</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>O'Rourke, Jonathan L</creatorcontrib><title>Local Cohomology and Degree Complexes of Monomial Ideals</title><title>arXiv.org</title><description>This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).</description><subject>Homology</subject><subject>Quotients</subject><subject>Rings (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8MlPTsxRcM7PyM_Nz8lPr1RIzEtRcElNL0pNBYrmFuSkVqQWK-SnKfjm5-XnZgLVeqakJuYU8zCwpgGpVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjY0NDQGWmhkTJwqAALwNXA</recordid><startdate>20191114</startdate><enddate>20191114</enddate><creator>O'Rourke, Jonathan L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191114</creationdate><title>Local Cohomology and Degree Complexes of Monomial Ideals</title><author>O'Rourke, Jonathan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23111372523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Homology</topic><topic>Quotients</topic><topic>Rings (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Rourke, Jonathan L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Rourke, Jonathan L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local Cohomology and Degree Complexes of Monomial Ideals</atitle><jtitle>arXiv.org</jtitle><date>2019-11-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2311137252 |
source | Free E- Journals |
subjects | Homology Quotients Rings (mathematics) |
title | Local Cohomology and Degree Complexes of Monomial Ideals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20Cohomology%20and%20Degree%20Complexes%20of%20Monomial%20Ideals&rft.jtitle=arXiv.org&rft.au=O'Rourke,%20Jonathan%20L&rft.date=2019-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2311137252%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311137252&rft_id=info:pmid/&rfr_iscdi=true |