Local Cohomology and Degree Complexes of Monomial Ideals

This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
1. Verfasser: O'Rourke, Jonathan L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator O'Rourke, Jonathan L
description This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2311137252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311137252</sourcerecordid><originalsourceid>FETCH-proquest_journals_23111372523</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8MlPTsxRcM7PyM_Nz8lPr1RIzEtRcElNL0pNBYrmFuSkVqQWK-SnKfjm5-XnZgLVeqakJuYU8zCwpgGpVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjY0NDQGWmhkTJwqAALwNXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311137252</pqid></control><display><type>article</type><title>Local Cohomology and Degree Complexes of Monomial Ideals</title><source>Free E- Journals</source><creator>O'Rourke, Jonathan L</creator><creatorcontrib>O'Rourke, Jonathan L</creatorcontrib><description>This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Quotients ; Rings (mathematics)</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>O'Rourke, Jonathan L</creatorcontrib><title>Local Cohomology and Degree Complexes of Monomial Ideals</title><title>arXiv.org</title><description>This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).</description><subject>Homology</subject><subject>Quotients</subject><subject>Rings (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8MlPTsxRcM7PyM_Nz8lPr1RIzEtRcElNL0pNBYrmFuSkVqQWK-SnKfjm5-XnZgLVeqakJuYU8zCwpgGpVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjY0NDQGWmhkTJwqAALwNXA</recordid><startdate>20191114</startdate><enddate>20191114</enddate><creator>O'Rourke, Jonathan L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191114</creationdate><title>Local Cohomology and Degree Complexes of Monomial Ideals</title><author>O'Rourke, Jonathan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23111372523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Homology</topic><topic>Quotients</topic><topic>Rings (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Rourke, Jonathan L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Rourke, Jonathan L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local Cohomology and Degree Complexes of Monomial Ideals</atitle><jtitle>arXiv.org</jtitle><date>2019-11-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper examines the dimension of the graded local cohomology \(H_\mathfrak{m}^p(S/K^s)_\gamma\) and \(H_\mathfrak{m}^p(S/K^{(s)})\) for a monomial ideal \(K\). This information is encoded in the reduced homology of a simplicial complex called the degree complex. We explicitly compute the degree complexes of ordinary and symbolic powers of sums and fiber products of ideals, as well as the degree complex of the mixed product, in terms of the degree complexes of their components. We then use homological techniques to discuss the cohomology of their quotient rings. In particular, this technique allows for the explicit computation of \(\text{reg} ((I + J + \mathfrak{m}\mathfrak{n})^{(s)})\) in terms of the regularities of \(I^{(i)}\) and \(J^{(j)}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2311137252
source Free E- Journals
subjects Homology
Quotients
Rings (mathematics)
title Local Cohomology and Degree Complexes of Monomial Ideals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20Cohomology%20and%20Degree%20Complexes%20of%20Monomial%20Ideals&rft.jtitle=arXiv.org&rft.au=O'Rourke,%20Jonathan%20L&rft.date=2019-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2311137252%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311137252&rft_id=info:pmid/&rfr_iscdi=true