Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings
This work correlates microstructural evolution and corrosion behavior of electrodeposited ZnNi-graphene oxide composite coatings. Incorporation of GO improved the coating compactness and decreased the surface roughness. Structural characterization revealed that the pure ZnNi coating contained only i...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-12, Vol.50 (12), p.5896-5913 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5913 |
---|---|
container_issue | 12 |
container_start_page | 5896 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 50 |
creator | Rekha, M. Y. Srivastava, Chandan |
description | This work correlates microstructural evolution and corrosion behavior of electrodeposited ZnNi-graphene oxide composite coatings. Incorporation of GO improved the coating compactness and decreased the surface roughness. Structural characterization revealed that the pure ZnNi coating contained only intermetallic phases (γ-NiZn
3
, γ-Ni
3
Zn
22
, and γ-Ni
5
Zn
21
), whereas ZnNi-GO coatings contained Zn phase along with the intermetallics. Addition of GO gradually increased the volume fraction of the Zn phase and reduced its crystallite size. With the addition of GO, a noticeable and systematic variation in the growth texture of the coatings was also observed. Corrosion resistance of the composite coating increased with increase in the addition of GO. Microstructural characterization revealed that the composite coating contained Zn phase along with the GO forming a Zn-GO matrix containing intermetallics. Further investigation of the GO extracted from the electrolyte bath revealed that during the electrodeposition process, Zn nucleated and grew over the GO in the electrolyte itself which led to the co-existence of Zn and GO in the coating matrix. Enhancement in the coating compactness, increase in the Zn phase which is sacrificial, and the impermeability of the GO led to the high corrosion resistance of the ZnNi-GO composite coatings when compared to the pure ZnNi coating. |
doi_str_mv | 10.1007/s11661-019-05474-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311107821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311107821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5d14c444f258a9f3fb758f47c828a11da7ea817a4770b47091921751528a7a1d3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRt8sR3HI1SlIBW6wNLFchOnTZXawU4q-Pc4BImN6e70vnenewhdA7kFQsRdAMgywAQkJpwJhuUJmgBnFINk5DT2RFDMs5Seo4sQ9oRElGYTtH6pC-9C5_ui671ukvnRNX1XO5toWyYz56M6TA9mp4-184mrkrV9rfHC63ZnrElWn3VpInloI9kNne5quw2X6KzSTTBXv3WK3h_nb7MnvFwtnmf3S1xQkB3mJbCCMValPNeyotVG8LxiosjTXAOUWhidg9BMCLJhgkiQKQgOPMpCQ0mn6Gbc23r30ZvQqb3rvY0nVUoB4ud5CpFKR2p4N3hTqdbXB-2_FBA1ZKjGDFUMRv1kqGQ00dEUImy3xv-t_sf1DSqNc_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311107821</pqid></control><display><type>article</type><title>Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings</title><source>SpringerNature Journals</source><creator>Rekha, M. Y. ; Srivastava, Chandan</creator><creatorcontrib>Rekha, M. Y. ; Srivastava, Chandan</creatorcontrib><description>This work correlates microstructural evolution and corrosion behavior of electrodeposited ZnNi-graphene oxide composite coatings. Incorporation of GO improved the coating compactness and decreased the surface roughness. Structural characterization revealed that the pure ZnNi coating contained only intermetallic phases (γ-NiZn
3
, γ-Ni
3
Zn
22
, and γ-Ni
5
Zn
21
), whereas ZnNi-GO coatings contained Zn phase along with the intermetallics. Addition of GO gradually increased the volume fraction of the Zn phase and reduced its crystallite size. With the addition of GO, a noticeable and systematic variation in the growth texture of the coatings was also observed. Corrosion resistance of the composite coating increased with increase in the addition of GO. Microstructural characterization revealed that the composite coating contained Zn phase along with the GO forming a Zn-GO matrix containing intermetallics. Further investigation of the GO extracted from the electrolyte bath revealed that during the electrodeposition process, Zn nucleated and grew over the GO in the electrolyte itself which led to the co-existence of Zn and GO in the coating matrix. Enhancement in the coating compactness, increase in the Zn phase which is sacrificial, and the impermeability of the GO led to the high corrosion resistance of the ZnNi-GO composite coatings when compared to the pure ZnNi coating.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05474-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coated electrodes ; Corrosion resistance ; Crystallites ; Electrolytes ; Evolution ; Graphene ; Intermetallic compounds ; Intermetallic phases ; Materials Science ; Metallic Materials ; Nanotechnology ; Permeability ; Protective coatings ; Structural analysis ; Structural Materials ; Surface roughness ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-12, Vol.50 (12), p.5896-5913</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5d14c444f258a9f3fb758f47c828a11da7ea817a4770b47091921751528a7a1d3</citedby><cites>FETCH-LOGICAL-c319t-5d14c444f258a9f3fb758f47c828a11da7ea817a4770b47091921751528a7a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05474-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05474-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rekha, M. Y.</creatorcontrib><creatorcontrib>Srivastava, Chandan</creatorcontrib><title>Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>This work correlates microstructural evolution and corrosion behavior of electrodeposited ZnNi-graphene oxide composite coatings. Incorporation of GO improved the coating compactness and decreased the surface roughness. Structural characterization revealed that the pure ZnNi coating contained only intermetallic phases (γ-NiZn
3
, γ-Ni
3
Zn
22
, and γ-Ni
5
Zn
21
), whereas ZnNi-GO coatings contained Zn phase along with the intermetallics. Addition of GO gradually increased the volume fraction of the Zn phase and reduced its crystallite size. With the addition of GO, a noticeable and systematic variation in the growth texture of the coatings was also observed. Corrosion resistance of the composite coating increased with increase in the addition of GO. Microstructural characterization revealed that the composite coating contained Zn phase along with the GO forming a Zn-GO matrix containing intermetallics. Further investigation of the GO extracted from the electrolyte bath revealed that during the electrodeposition process, Zn nucleated and grew over the GO in the electrolyte itself which led to the co-existence of Zn and GO in the coating matrix. Enhancement in the coating compactness, increase in the Zn phase which is sacrificial, and the impermeability of the GO led to the high corrosion resistance of the ZnNi-GO composite coatings when compared to the pure ZnNi coating.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Corrosion resistance</subject><subject>Crystallites</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>Graphene</subject><subject>Intermetallic compounds</subject><subject>Intermetallic phases</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Permeability</subject><subject>Protective coatings</subject><subject>Structural analysis</subject><subject>Structural Materials</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRt8sR3HI1SlIBW6wNLFchOnTZXawU4q-Pc4BImN6e70vnenewhdA7kFQsRdAMgywAQkJpwJhuUJmgBnFINk5DT2RFDMs5Seo4sQ9oRElGYTtH6pC-9C5_ui671ukvnRNX1XO5toWyYz56M6TA9mp4-184mrkrV9rfHC63ZnrElWn3VpInloI9kNne5quw2X6KzSTTBXv3WK3h_nb7MnvFwtnmf3S1xQkB3mJbCCMValPNeyotVG8LxiosjTXAOUWhidg9BMCLJhgkiQKQgOPMpCQ0mn6Gbc23r30ZvQqb3rvY0nVUoB4ud5CpFKR2p4N3hTqdbXB-2_FBA1ZKjGDFUMRv1kqGQ00dEUImy3xv-t_sf1DSqNc_o</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Rekha, M. Y.</creator><creator>Srivastava, Chandan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20191201</creationdate><title>Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings</title><author>Rekha, M. Y. ; Srivastava, Chandan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5d14c444f258a9f3fb758f47c828a11da7ea817a4770b47091921751528a7a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Corrosion resistance</topic><topic>Crystallites</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>Graphene</topic><topic>Intermetallic compounds</topic><topic>Intermetallic phases</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Permeability</topic><topic>Protective coatings</topic><topic>Structural analysis</topic><topic>Structural Materials</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekha, M. Y.</creatorcontrib><creatorcontrib>Srivastava, Chandan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekha, M. Y.</au><au>Srivastava, Chandan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>50</volume><issue>12</issue><spage>5896</spage><epage>5913</epage><pages>5896-5913</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>This work correlates microstructural evolution and corrosion behavior of electrodeposited ZnNi-graphene oxide composite coatings. Incorporation of GO improved the coating compactness and decreased the surface roughness. Structural characterization revealed that the pure ZnNi coating contained only intermetallic phases (γ-NiZn
3
, γ-Ni
3
Zn
22
, and γ-Ni
5
Zn
21
), whereas ZnNi-GO coatings contained Zn phase along with the intermetallics. Addition of GO gradually increased the volume fraction of the Zn phase and reduced its crystallite size. With the addition of GO, a noticeable and systematic variation in the growth texture of the coatings was also observed. Corrosion resistance of the composite coating increased with increase in the addition of GO. Microstructural characterization revealed that the composite coating contained Zn phase along with the GO forming a Zn-GO matrix containing intermetallics. Further investigation of the GO extracted from the electrolyte bath revealed that during the electrodeposition process, Zn nucleated and grew over the GO in the electrolyte itself which led to the co-existence of Zn and GO in the coating matrix. Enhancement in the coating compactness, increase in the Zn phase which is sacrificial, and the impermeability of the GO led to the high corrosion resistance of the ZnNi-GO composite coatings when compared to the pure ZnNi coating.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05474-9</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-12, Vol.50 (12), p.5896-5913 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2311107821 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Coated electrodes Corrosion resistance Crystallites Electrolytes Evolution Graphene Intermetallic compounds Intermetallic phases Materials Science Metallic Materials Nanotechnology Permeability Protective coatings Structural analysis Structural Materials Surface roughness Surfaces and Interfaces Thin Films |
title | Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Evolution%20and%20Corrosion%20Behavior%20of%20ZnNi-Graphene%20Oxide%20Composite%20Coatings&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Rekha,%20M.%20Y.&rft.date=2019-12-01&rft.volume=50&rft.issue=12&rft.spage=5896&rft.epage=5913&rft.pages=5896-5913&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05474-9&rft_dat=%3Cproquest_cross%3E2311107821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311107821&rft_id=info:pmid/&rfr_iscdi=true |