Thermal Impact of LED Chips on Quantum Dots in Remote-Chip and On-Chip Packaging Structures

Light-emitting diode (LED) chips in quantum dot (QD)-converted LEDs serve simultaneously as a heat source and a heat sink, but it remains unclear which of these is the major factor that affects the operating temperature of QDs. Here, we investigated the thermal and optical performances of QD-convert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2019-11, Vol.66 (11), p.4817-4822
Hauptverfasser: Li, Zong-Tao, Li, Jie-Xin, Li, Jia-Sheng, Du, Xue-Wei, Song, Cun-Jiang, Tang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4822
container_issue 11
container_start_page 4817
container_title IEEE transactions on electron devices
container_volume 66
creator Li, Zong-Tao
Li, Jie-Xin
Li, Jia-Sheng
Du, Xue-Wei
Song, Cun-Jiang
Tang, Yong
description Light-emitting diode (LED) chips in quantum dot (QD)-converted LEDs serve simultaneously as a heat source and a heat sink, but it remains unclear which of these is the major factor that affects the operating temperature of QDs. Here, we investigated the thermal and optical performances of QD-converted LEDs using QD-on-chip and QD-remote-chip packaging structures, to better understand the thermal effect of LED chips on QDs. Our results indicated that the QD-on-chip structure achieved the same optical performance as the QD-remote-chip structure, while the former can save QD usage up to 75.9% owing to the higher absorption probability of QDs closer to the blue source. Most importantly, the QD-on-chip structure largely reduced the maximal surface temperature from 82.7 °C to 60.2 °C at 250 mA, and had a longer operating lifetime compared with the QD-remote-chip structure. Simulations revealed that the QD-remote-chip structure could suppress the heat transfer from chips to QDs; however, the hot spot remained in QDs, owing to the heavy conversion loss and low thermal conductivity of the silicone matrix; consequently, the QD-on-chip structure had better heat dissipation (lower temperature) for QDs closer to the chip that served as heat sinks. Therefore, it is suggested to place QDs near the heat sink with high thermal conductivity, such as the LED chip, for heat dissipation; this is better than removing QDs for blocking the heat generated by the LED chip.
doi_str_mv 10.1109/TED.2019.2941911
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2311107161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8852676</ieee_id><sourcerecordid>2311107161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8ef9bb09031348aa5524603f0e1e37d8404ff1bdae76de91ed97358e57f57b9e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmNwR-ISiXNH3DRtckTbgEmTxsc4cYjS1tk61g-S9MC_p9MmTrbl57Wlh5BbYBMAph7W89kkZqAmsUpAAZyREQiRRSpN0nMyYgxkpLjkl-TK-90wpkkSj8jXeouuNnu6qDtTBNpaupzP6HRbdZ62DX3rTRP6ms7a4GnV0Hes24DRYU9NU9JVc-xfTfFtNlWzoR_B9UXoHfprcmHN3uPNqY7J59N8PX2JlqvnxfRxGRWxghBJtCrPmWIceCKNESJOUsYtQ0CelTJhibWQlwaztEQFWKqMC4kisyLLFfIxuT_e7Vz706MPetf2rhle6pjDYCeDFAaKHanCtd47tLpzVW3crwamDwr1oFAfFOqTwiFyd4xUiPiPSyniNEv5H82EazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311107161</pqid></control><display><type>article</type><title>Thermal Impact of LED Chips on Quantum Dots in Remote-Chip and On-Chip Packaging Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zong-Tao ; Li, Jie-Xin ; Li, Jia-Sheng ; Du, Xue-Wei ; Song, Cun-Jiang ; Tang, Yong</creator><creatorcontrib>Li, Zong-Tao ; Li, Jie-Xin ; Li, Jia-Sheng ; Du, Xue-Wei ; Song, Cun-Jiang ; Tang, Yong</creatorcontrib><description>Light-emitting diode (LED) chips in quantum dot (QD)-converted LEDs serve simultaneously as a heat source and a heat sink, but it remains unclear which of these is the major factor that affects the operating temperature of QDs. Here, we investigated the thermal and optical performances of QD-converted LEDs using QD-on-chip and QD-remote-chip packaging structures, to better understand the thermal effect of LED chips on QDs. Our results indicated that the QD-on-chip structure achieved the same optical performance as the QD-remote-chip structure, while the former can save QD usage up to 75.9% owing to the higher absorption probability of QDs closer to the blue source. Most importantly, the QD-on-chip structure largely reduced the maximal surface temperature from 82.7 °C to 60.2 °C at 250 mA, and had a longer operating lifetime compared with the QD-remote-chip structure. Simulations revealed that the QD-remote-chip structure could suppress the heat transfer from chips to QDs; however, the hot spot remained in QDs, owing to the heavy conversion loss and low thermal conductivity of the silicone matrix; consequently, the QD-on-chip structure had better heat dissipation (lower temperature) for QDs closer to the chip that served as heat sinks. Therefore, it is suggested to place QDs near the heat sink with high thermal conductivity, such as the LED chip, for heat dissipation; this is better than removing QDs for blocking the heat generated by the LED chip.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2019.2941911</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chips ; Heat conductivity ; Heat sinks ; Heat transfer ; Lenses ; Light emitting diodes ; Light-emitting diodes (LEDs) ; Operating temperature ; Packaging ; packaging structure ; Performance evaluation ; Product design ; quantum dot (QD) ; Quantum dots ; Temperature ; Temperature effects ; thermal and optical performance ; Thermal conductivity</subject><ispartof>IEEE transactions on electron devices, 2019-11, Vol.66 (11), p.4817-4822</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8ef9bb09031348aa5524603f0e1e37d8404ff1bdae76de91ed97358e57f57b9e3</citedby><cites>FETCH-LOGICAL-c291t-8ef9bb09031348aa5524603f0e1e37d8404ff1bdae76de91ed97358e57f57b9e3</cites><orcidid>0000-0001-7745-2783 ; 0000-0003-4486-0005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8852676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8852676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zong-Tao</creatorcontrib><creatorcontrib>Li, Jie-Xin</creatorcontrib><creatorcontrib>Li, Jia-Sheng</creatorcontrib><creatorcontrib>Du, Xue-Wei</creatorcontrib><creatorcontrib>Song, Cun-Jiang</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><title>Thermal Impact of LED Chips on Quantum Dots in Remote-Chip and On-Chip Packaging Structures</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Light-emitting diode (LED) chips in quantum dot (QD)-converted LEDs serve simultaneously as a heat source and a heat sink, but it remains unclear which of these is the major factor that affects the operating temperature of QDs. Here, we investigated the thermal and optical performances of QD-converted LEDs using QD-on-chip and QD-remote-chip packaging structures, to better understand the thermal effect of LED chips on QDs. Our results indicated that the QD-on-chip structure achieved the same optical performance as the QD-remote-chip structure, while the former can save QD usage up to 75.9% owing to the higher absorption probability of QDs closer to the blue source. Most importantly, the QD-on-chip structure largely reduced the maximal surface temperature from 82.7 °C to 60.2 °C at 250 mA, and had a longer operating lifetime compared with the QD-remote-chip structure. Simulations revealed that the QD-remote-chip structure could suppress the heat transfer from chips to QDs; however, the hot spot remained in QDs, owing to the heavy conversion loss and low thermal conductivity of the silicone matrix; consequently, the QD-on-chip structure had better heat dissipation (lower temperature) for QDs closer to the chip that served as heat sinks. Therefore, it is suggested to place QDs near the heat sink with high thermal conductivity, such as the LED chip, for heat dissipation; this is better than removing QDs for blocking the heat generated by the LED chip.</description><subject>Chips</subject><subject>Heat conductivity</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Lenses</subject><subject>Light emitting diodes</subject><subject>Light-emitting diodes (LEDs)</subject><subject>Operating temperature</subject><subject>Packaging</subject><subject>packaging structure</subject><subject>Performance evaluation</subject><subject>Product design</subject><subject>quantum dot (QD)</subject><subject>Quantum dots</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>thermal and optical performance</subject><subject>Thermal conductivity</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmNwR-ISiXNH3DRtckTbgEmTxsc4cYjS1tk61g-S9MC_p9MmTrbl57Wlh5BbYBMAph7W89kkZqAmsUpAAZyREQiRRSpN0nMyYgxkpLjkl-TK-90wpkkSj8jXeouuNnu6qDtTBNpaupzP6HRbdZ62DX3rTRP6ms7a4GnV0Hes24DRYU9NU9JVc-xfTfFtNlWzoR_B9UXoHfprcmHN3uPNqY7J59N8PX2JlqvnxfRxGRWxghBJtCrPmWIceCKNESJOUsYtQ0CelTJhibWQlwaztEQFWKqMC4kisyLLFfIxuT_e7Vz706MPetf2rhle6pjDYCeDFAaKHanCtd47tLpzVW3crwamDwr1oFAfFOqTwiFyd4xUiPiPSyniNEv5H82EazQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Zong-Tao</creator><creator>Li, Jie-Xin</creator><creator>Li, Jia-Sheng</creator><creator>Du, Xue-Wei</creator><creator>Song, Cun-Jiang</creator><creator>Tang, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7745-2783</orcidid><orcidid>https://orcid.org/0000-0003-4486-0005</orcidid></search><sort><creationdate>20191101</creationdate><title>Thermal Impact of LED Chips on Quantum Dots in Remote-Chip and On-Chip Packaging Structures</title><author>Li, Zong-Tao ; Li, Jie-Xin ; Li, Jia-Sheng ; Du, Xue-Wei ; Song, Cun-Jiang ; Tang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8ef9bb09031348aa5524603f0e1e37d8404ff1bdae76de91ed97358e57f57b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chips</topic><topic>Heat conductivity</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Lenses</topic><topic>Light emitting diodes</topic><topic>Light-emitting diodes (LEDs)</topic><topic>Operating temperature</topic><topic>Packaging</topic><topic>packaging structure</topic><topic>Performance evaluation</topic><topic>Product design</topic><topic>quantum dot (QD)</topic><topic>Quantum dots</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>thermal and optical performance</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zong-Tao</creatorcontrib><creatorcontrib>Li, Jie-Xin</creatorcontrib><creatorcontrib>Li, Jia-Sheng</creatorcontrib><creatorcontrib>Du, Xue-Wei</creatorcontrib><creatorcontrib>Song, Cun-Jiang</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zong-Tao</au><au>Li, Jie-Xin</au><au>Li, Jia-Sheng</au><au>Du, Xue-Wei</au><au>Song, Cun-Jiang</au><au>Tang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Impact of LED Chips on Quantum Dots in Remote-Chip and On-Chip Packaging Structures</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>66</volume><issue>11</issue><spage>4817</spage><epage>4822</epage><pages>4817-4822</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Light-emitting diode (LED) chips in quantum dot (QD)-converted LEDs serve simultaneously as a heat source and a heat sink, but it remains unclear which of these is the major factor that affects the operating temperature of QDs. Here, we investigated the thermal and optical performances of QD-converted LEDs using QD-on-chip and QD-remote-chip packaging structures, to better understand the thermal effect of LED chips on QDs. Our results indicated that the QD-on-chip structure achieved the same optical performance as the QD-remote-chip structure, while the former can save QD usage up to 75.9% owing to the higher absorption probability of QDs closer to the blue source. Most importantly, the QD-on-chip structure largely reduced the maximal surface temperature from 82.7 °C to 60.2 °C at 250 mA, and had a longer operating lifetime compared with the QD-remote-chip structure. Simulations revealed that the QD-remote-chip structure could suppress the heat transfer from chips to QDs; however, the hot spot remained in QDs, owing to the heavy conversion loss and low thermal conductivity of the silicone matrix; consequently, the QD-on-chip structure had better heat dissipation (lower temperature) for QDs closer to the chip that served as heat sinks. Therefore, it is suggested to place QDs near the heat sink with high thermal conductivity, such as the LED chip, for heat dissipation; this is better than removing QDs for blocking the heat generated by the LED chip.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2019.2941911</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7745-2783</orcidid><orcidid>https://orcid.org/0000-0003-4486-0005</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2019-11, Vol.66 (11), p.4817-4822
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2311107161
source IEEE Electronic Library (IEL)
subjects Chips
Heat conductivity
Heat sinks
Heat transfer
Lenses
Light emitting diodes
Light-emitting diodes (LEDs)
Operating temperature
Packaging
packaging structure
Performance evaluation
Product design
quantum dot (QD)
Quantum dots
Temperature
Temperature effects
thermal and optical performance
Thermal conductivity
title Thermal Impact of LED Chips on Quantum Dots in Remote-Chip and On-Chip Packaging Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Impact%20of%20LED%20Chips%20on%20Quantum%20Dots%20in%20Remote-Chip%20and%20On-Chip%20Packaging%20Structures&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Li,%20Zong-Tao&rft.date=2019-11-01&rft.volume=66&rft.issue=11&rft.spage=4817&rft.epage=4822&rft.pages=4817-4822&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2019.2941911&rft_dat=%3Cproquest_RIE%3E2311107161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311107161&rft_id=info:pmid/&rft_ieee_id=8852676&rfr_iscdi=true