Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries

This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Pham, Vung, Dang, Tommy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pham, Vung
Dang, Tommy
description This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in large time series. Instead of focusing on detecting outliers at each time point, we monitor and display the discrepant temporal signatures of each data entry concerning the overall distributions. Our prototype is designed to handle these tasks in parallel to improve performance. To highlight the benefits and performance of our approach, we illustrate and validate the use of Outliagnostics on real-world datasets of various sizes in different parallelism configurations. This work also discusses how to extend these ideas to handle time series with a higher number of dimensions and provides a prototype for this type of datasets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2310804129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310804129</sourcerecordid><originalsourceid>FETCH-proquest_journals_23108041293</originalsourceid><addsrcrecordid>eNqNi0ELgjAYQEcQJOV_GHQW5qZlXdPo1iGpowyZ8snabN92sF9fQj-g0zu89xYk4kKkSZFxviIx4sAY47s9z3MRkcc1eA2yNxY9tHikd8AgNbzB9LRWz9E6qWkJ2Do1StNOFAydn2kObtAb6YNTSG1HS-klrYx3oHBDlp3UqOIf12R7rurTJRmdfQWFvhlscOarGi5SVrAs5QfxX_UBvUhCGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310804129</pqid></control><display><type>article</type><title>Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries</title><source>Free E- Journals</source><creator>Pham, Vung ; Dang, Tommy</creator><creatorcontrib>Pham, Vung ; Dang, Tommy</creatorcontrib><description>This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in large time series. Instead of focusing on detecting outliers at each time point, we monitor and display the discrepant temporal signatures of each data entry concerning the overall distributions. Our prototype is designed to handle these tasks in parallel to improve performance. To highlight the benefits and performance of our approach, we illustrate and validate the use of Outliagnostics on real-world datasets of various sizes in different parallelism configurations. This work also discusses how to extend these ideas to handle time series with a higher number of dimensions and provides a prototype for this type of datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Abnormalities ; Data analysis ; Datasets ; Outliers (statistics) ; Performance enhancement ; Prototypes ; Signatures ; Time series ; Two dimensional analysis</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pham, Vung</creatorcontrib><creatorcontrib>Dang, Tommy</creatorcontrib><title>Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries</title><title>arXiv.org</title><description>This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in large time series. Instead of focusing on detecting outliers at each time point, we monitor and display the discrepant temporal signatures of each data entry concerning the overall distributions. Our prototype is designed to handle these tasks in parallel to improve performance. To highlight the benefits and performance of our approach, we illustrate and validate the use of Outliagnostics on real-world datasets of various sizes in different parallelism configurations. This work also discusses how to extend these ideas to handle time series with a higher number of dimensions and provides a prototype for this type of datasets.</description><subject>Abnormalities</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Outliers (statistics)</subject><subject>Performance enhancement</subject><subject>Prototypes</subject><subject>Signatures</subject><subject>Time series</subject><subject>Two dimensional analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0ELgjAYQEcQJOV_GHQW5qZlXdPo1iGpowyZ8snabN92sF9fQj-g0zu89xYk4kKkSZFxviIx4sAY47s9z3MRkcc1eA2yNxY9tHikd8AgNbzB9LRWz9E6qWkJ2Do1StNOFAydn2kObtAb6YNTSG1HS-klrYx3oHBDlp3UqOIf12R7rurTJRmdfQWFvhlscOarGi5SVrAs5QfxX_UBvUhCGA</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Pham, Vung</creator><creator>Dang, Tommy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191030</creationdate><title>Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries</title><author>Pham, Vung ; Dang, Tommy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23108041293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abnormalities</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Outliers (statistics)</topic><topic>Performance enhancement</topic><topic>Prototypes</topic><topic>Signatures</topic><topic>Time series</topic><topic>Two dimensional analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Pham, Vung</creatorcontrib><creatorcontrib>Dang, Tommy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Vung</au><au>Dang, Tommy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries</atitle><jtitle>arXiv.org</jtitle><date>2019-10-30</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in large time series. Instead of focusing on detecting outliers at each time point, we monitor and display the discrepant temporal signatures of each data entry concerning the overall distributions. Our prototype is designed to handle these tasks in parallel to improve performance. To highlight the benefits and performance of our approach, we illustrate and validate the use of Outliagnostics on real-world datasets of various sizes in different parallelism configurations. This work also discusses how to extend these ideas to handle time series with a higher number of dimensions and provides a prototype for this type of datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2310804129
source Free E- Journals
subjects Abnormalities
Data analysis
Datasets
Outliers (statistics)
Performance enhancement
Prototypes
Signatures
Time series
Two dimensional analysis
title Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Outliagnostics:%20Visualizing%20Temporal%20Discrepancy%20in%20Outlying%20Signatures%20of%20Data%20Entries&rft.jtitle=arXiv.org&rft.au=Pham,%20Vung&rft.date=2019-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2310804129%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310804129&rft_id=info:pmid/&rfr_iscdi=true