Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions
Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clear...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Capela, Fabio Nouchi, Vincent Ruud Van Deursen Tetko, Igor V Godin, Guillaume |
description | Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2310803831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310803831</sourcerecordid><originalsourceid>FETCH-proquest_journals_23108038313</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupInVbkX8LPwt6rqE9qlpQxJfEsTb24UHcDUDMyOScCHyrFxwPiGp9x1jjC9XvChEQm6nqIMK0vf0CBKNMg96MXSP0j3pGSJKPSC8Lfaerp3TClpaWXqyGpqoJdIrWgcYPoNAq5qgrPEzMr5L7SH9cUrmu221OWQO7SuCD3VnI5oh1VzkrGSiFLn47_oCt-ZAxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310803831</pqid></control><display><type>article</type><title>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</title><source>Free E- Journals</source><creator>Capela, Fabio ; Nouchi, Vincent ; Ruud Van Deursen ; Tetko, Igor V ; Godin, Guillaume</creator><creatorcontrib>Capela, Fabio ; Nouchi, Vincent ; Ruud Van Deursen ; Tetko, Igor V ; Godin, Guillaume</creatorcontrib><description>Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical properties ; Data points ; Graph neural networks ; Learning ; Molecular properties ; Neural networks ; Organic chemistry</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Capela, Fabio</creatorcontrib><creatorcontrib>Nouchi, Vincent</creatorcontrib><creatorcontrib>Ruud Van Deursen</creatorcontrib><creatorcontrib>Tetko, Igor V</creatorcontrib><creatorcontrib>Godin, Guillaume</creatorcontrib><title>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</title><title>arXiv.org</title><description>Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.</description><subject>Chemical properties</subject><subject>Data points</subject><subject>Graph neural networks</subject><subject>Learning</subject><subject>Molecular properties</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupInVbkX8LPwt6rqE9qlpQxJfEsTb24UHcDUDMyOScCHyrFxwPiGp9x1jjC9XvChEQm6nqIMK0vf0CBKNMg96MXSP0j3pGSJKPSC8Lfaerp3TClpaWXqyGpqoJdIrWgcYPoNAq5qgrPEzMr5L7SH9cUrmu221OWQO7SuCD3VnI5oh1VzkrGSiFLn47_oCt-ZAxA</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Capela, Fabio</creator><creator>Nouchi, Vincent</creator><creator>Ruud Van Deursen</creator><creator>Tetko, Igor V</creator><creator>Godin, Guillaume</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191030</creationdate><title>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</title><author>Capela, Fabio ; Nouchi, Vincent ; Ruud Van Deursen ; Tetko, Igor V ; Godin, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23108038313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical properties</topic><topic>Data points</topic><topic>Graph neural networks</topic><topic>Learning</topic><topic>Molecular properties</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Capela, Fabio</creatorcontrib><creatorcontrib>Nouchi, Vincent</creatorcontrib><creatorcontrib>Ruud Van Deursen</creatorcontrib><creatorcontrib>Tetko, Igor V</creatorcontrib><creatorcontrib>Godin, Guillaume</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capela, Fabio</au><au>Nouchi, Vincent</au><au>Ruud Van Deursen</au><au>Tetko, Igor V</au><au>Godin, Guillaume</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</atitle><jtitle>arXiv.org</jtitle><date>2019-10-30</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2310803831 |
source | Free E- Journals |
subjects | Chemical properties Data points Graph neural networks Learning Molecular properties Neural networks Organic chemistry |
title | Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multitask%20Learning%20On%20Graph%20Neural%20Networks%20Applied%20To%20Molecular%20Property%20Predictions&rft.jtitle=arXiv.org&rft.au=Capela,%20Fabio&rft.date=2019-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2310803831%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310803831&rft_id=info:pmid/&rfr_iscdi=true |