Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions

Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Capela, Fabio, Nouchi, Vincent, Ruud Van Deursen, Tetko, Igor V, Godin, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Capela, Fabio
Nouchi, Vincent
Ruud Van Deursen
Tetko, Igor V
Godin, Guillaume
description Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2310803831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310803831</sourcerecordid><originalsourceid>FETCH-proquest_journals_23108038313</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupInVbkX8LPwt6rqE9qlpQxJfEsTb24UHcDUDMyOScCHyrFxwPiGp9x1jjC9XvChEQm6nqIMK0vf0CBKNMg96MXSP0j3pGSJKPSC8Lfaerp3TClpaWXqyGpqoJdIrWgcYPoNAq5qgrPEzMr5L7SH9cUrmu221OWQO7SuCD3VnI5oh1VzkrGSiFLn47_oCt-ZAxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310803831</pqid></control><display><type>article</type><title>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</title><source>Free E- Journals</source><creator>Capela, Fabio ; Nouchi, Vincent ; Ruud Van Deursen ; Tetko, Igor V ; Godin, Guillaume</creator><creatorcontrib>Capela, Fabio ; Nouchi, Vincent ; Ruud Van Deursen ; Tetko, Igor V ; Godin, Guillaume</creatorcontrib><description>Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical properties ; Data points ; Graph neural networks ; Learning ; Molecular properties ; Neural networks ; Organic chemistry</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Capela, Fabio</creatorcontrib><creatorcontrib>Nouchi, Vincent</creatorcontrib><creatorcontrib>Ruud Van Deursen</creatorcontrib><creatorcontrib>Tetko, Igor V</creatorcontrib><creatorcontrib>Godin, Guillaume</creatorcontrib><title>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</title><title>arXiv.org</title><description>Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.</description><subject>Chemical properties</subject><subject>Data points</subject><subject>Graph neural networks</subject><subject>Learning</subject><subject>Molecular properties</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupInVbkX8LPwt6rqE9qlpQxJfEsTb24UHcDUDMyOScCHyrFxwPiGp9x1jjC9XvChEQm6nqIMK0vf0CBKNMg96MXSP0j3pGSJKPSC8Lfaerp3TClpaWXqyGpqoJdIrWgcYPoNAq5qgrPEzMr5L7SH9cUrmu221OWQO7SuCD3VnI5oh1VzkrGSiFLn47_oCt-ZAxA</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Capela, Fabio</creator><creator>Nouchi, Vincent</creator><creator>Ruud Van Deursen</creator><creator>Tetko, Igor V</creator><creator>Godin, Guillaume</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191030</creationdate><title>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</title><author>Capela, Fabio ; Nouchi, Vincent ; Ruud Van Deursen ; Tetko, Igor V ; Godin, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23108038313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical properties</topic><topic>Data points</topic><topic>Graph neural networks</topic><topic>Learning</topic><topic>Molecular properties</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Capela, Fabio</creatorcontrib><creatorcontrib>Nouchi, Vincent</creatorcontrib><creatorcontrib>Ruud Van Deursen</creatorcontrib><creatorcontrib>Tetko, Igor V</creatorcontrib><creatorcontrib>Godin, Guillaume</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capela, Fabio</au><au>Nouchi, Vincent</au><au>Ruud Van Deursen</au><au>Tetko, Igor V</au><au>Godin, Guillaume</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions</atitle><jtitle>arXiv.org</jtitle><date>2019-10-30</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Prediction of molecular properties, including physico-chemical properties, is a challenging task in chemistry. Herein we present a new state-of-the-art multitask prediction method based on existing graph neural network models. We have used different architectures for our models and the results clearly demonstrate that multitask learning can improve model performance. Additionally, a significant reduction of variance in the models has been observed. Most importantly, datasets with a small amount of data points reach better results without the need of augmentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2310803831
source Free E- Journals
subjects Chemical properties
Data points
Graph neural networks
Learning
Molecular properties
Neural networks
Organic chemistry
title Multitask Learning On Graph Neural Networks Applied To Molecular Property Predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multitask%20Learning%20On%20Graph%20Neural%20Networks%20Applied%20To%20Molecular%20Property%20Predictions&rft.jtitle=arXiv.org&rft.au=Capela,%20Fabio&rft.date=2019-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2310803831%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310803831&rft_id=info:pmid/&rfr_iscdi=true