Electro-Discharge Machining Performance of Nimonic 80A: An Experimental Observation
The present work reports electro-discharge machining (EDM) performance of superalloy Nimonic 80A. Experiments are conducted using a two-factor three-level full factorial design of experiment in consideration with two important electrical parameters: peak discharge current and pulse-on duration. Mach...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2019-12, Vol.44 (12), p.10155-10167 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10167 |
---|---|
container_issue | 12 |
container_start_page | 10155 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 44 |
creator | Sahu, Debashish Sahu, Santosh Kumar Jadam, Thrinadh Datta, Saurav |
description | The present work reports electro-discharge machining (EDM) performance of superalloy Nimonic 80A. Experiments are conducted using a two-factor three-level full factorial design of experiment in consideration with two important electrical parameters: peak discharge current and pulse-on duration. Machining performance is evaluated in purview of material removal efficiency, rate of electrode wear, and surface integrity of the EDMed part product. Apart from morphological study, surface topographic measures including surface roughness, impact of surface cracking, white layer thickness, material migration, phase alteration, and micro-indentation hardness are studied in detail. Results of qualitative analysis on crater morphology are correlated with roughness value of the machined specimen. Effects of peak current and pulse-on time on influencing EDM performance indicators are also reported. An optimal parametric combination is determined for superior process performance. In doing so, utility theory is utilized to aggregate multi-performance characteristics to compute a unique index (called overall utility degree). The parametric combination which corresponds to maximum overall utility is assumed to be the best. It is determined that maximum material removal efficiency, minimal tool wear rate, and superior surface finish can be achieved at parameters setting:
I
p
= 35 A and
T
on
= 1000 µm. The said optimal setting corresponds to overall utility value of 6.53. Confirmatory test result yields: MRR = 9.05 × 10
−3
g/s, TWR = 1.2 × 10
−5
g/s, and
R
a
= 14.1 µm at optimal setting. |
doi_str_mv | 10.1007/s13369-019-04112-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310696983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310696983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c6f7e258057dc7587c8a68ca9dc410c3d4106bdd1fc3ac71c7d1f229f8c501083</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsNR-AU8Bz9FMsrvJeiu1_oFqBRW8hXQ220babE22ot_e2BW8eZiZd3i_meFl2Smwc2BMXkQQoqwog1Q5AKdwkA04VEBzruBwrwUtSvl6nI1idAuWK1EVAGKQPU3XFrvQ0isXcWXC0pJ7gyvnnV-SRxuaNmyMR0vahjy4TesdEsXGl2TsyfRza4PbWN-ZNZkvog0fpnOtP8mOGrOOdvQ7h9nL9fR5cktn85u7yXhGUUDVUSwbaXmhWCFrlIWSqEyp0FQ15sBQ1KmXi7qGBoVBCSiT5LxqFBYMmBLD7Kzfuw3t-87GTr-1u-DTSc1FYquyUiK5eO_C0MYYbKO36WkTvjQw_ZOf7vPTKT-9z09DgkQPxWT2Sxv-Vv9DfQMy3nJG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310696983</pqid></control><display><type>article</type><title>Electro-Discharge Machining Performance of Nimonic 80A: An Experimental Observation</title><source>SpringerLink Journals</source><creator>Sahu, Debashish ; Sahu, Santosh Kumar ; Jadam, Thrinadh ; Datta, Saurav</creator><creatorcontrib>Sahu, Debashish ; Sahu, Santosh Kumar ; Jadam, Thrinadh ; Datta, Saurav</creatorcontrib><description>The present work reports electro-discharge machining (EDM) performance of superalloy Nimonic 80A. Experiments are conducted using a two-factor three-level full factorial design of experiment in consideration with two important electrical parameters: peak discharge current and pulse-on duration. Machining performance is evaluated in purview of material removal efficiency, rate of electrode wear, and surface integrity of the EDMed part product. Apart from morphological study, surface topographic measures including surface roughness, impact of surface cracking, white layer thickness, material migration, phase alteration, and micro-indentation hardness are studied in detail. Results of qualitative analysis on crater morphology are correlated with roughness value of the machined specimen. Effects of peak current and pulse-on time on influencing EDM performance indicators are also reported. An optimal parametric combination is determined for superior process performance. In doing so, utility theory is utilized to aggregate multi-performance characteristics to compute a unique index (called overall utility degree). The parametric combination which corresponds to maximum overall utility is assumed to be the best. It is determined that maximum material removal efficiency, minimal tool wear rate, and superior surface finish can be achieved at parameters setting:
I
p
= 35 A and
T
on
= 1000 µm. The said optimal setting corresponds to overall utility value of 6.53. Confirmatory test result yields: MRR = 9.05 × 10
−3
g/s, TWR = 1.2 × 10
−5
g/s, and
R
a
= 14.1 µm at optimal setting.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-019-04112-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Correlation analysis ; Design of experiments ; EDM electrodes ; Engineering ; Factorial design ; Humanities and Social Sciences ; Machining ; Microhardness ; Morphology ; multidisciplinary ; Nimonic alloys ; Parameters ; Performance evaluation ; Qualitative analysis ; Research Article - Mechanical Engineering ; Science ; Superalloys ; Surface finish ; Surface roughness ; Thickness ; Tool wear ; Utility theory ; Wear rate</subject><ispartof>Arabian journal for science and engineering (2011), 2019-12, Vol.44 (12), p.10155-10167</ispartof><rights>King Fahd University of Petroleum & Minerals 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c6f7e258057dc7587c8a68ca9dc410c3d4106bdd1fc3ac71c7d1f229f8c501083</citedby><cites>FETCH-LOGICAL-c319t-c6f7e258057dc7587c8a68ca9dc410c3d4106bdd1fc3ac71c7d1f229f8c501083</cites><orcidid>0000-0001-5550-8627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-019-04112-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-019-04112-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sahu, Debashish</creatorcontrib><creatorcontrib>Sahu, Santosh Kumar</creatorcontrib><creatorcontrib>Jadam, Thrinadh</creatorcontrib><creatorcontrib>Datta, Saurav</creatorcontrib><title>Electro-Discharge Machining Performance of Nimonic 80A: An Experimental Observation</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>The present work reports electro-discharge machining (EDM) performance of superalloy Nimonic 80A. Experiments are conducted using a two-factor three-level full factorial design of experiment in consideration with two important electrical parameters: peak discharge current and pulse-on duration. Machining performance is evaluated in purview of material removal efficiency, rate of electrode wear, and surface integrity of the EDMed part product. Apart from morphological study, surface topographic measures including surface roughness, impact of surface cracking, white layer thickness, material migration, phase alteration, and micro-indentation hardness are studied in detail. Results of qualitative analysis on crater morphology are correlated with roughness value of the machined specimen. Effects of peak current and pulse-on time on influencing EDM performance indicators are also reported. An optimal parametric combination is determined for superior process performance. In doing so, utility theory is utilized to aggregate multi-performance characteristics to compute a unique index (called overall utility degree). The parametric combination which corresponds to maximum overall utility is assumed to be the best. It is determined that maximum material removal efficiency, minimal tool wear rate, and superior surface finish can be achieved at parameters setting:
I
p
= 35 A and
T
on
= 1000 µm. The said optimal setting corresponds to overall utility value of 6.53. Confirmatory test result yields: MRR = 9.05 × 10
−3
g/s, TWR = 1.2 × 10
−5
g/s, and
R
a
= 14.1 µm at optimal setting.</description><subject>Correlation analysis</subject><subject>Design of experiments</subject><subject>EDM electrodes</subject><subject>Engineering</subject><subject>Factorial design</subject><subject>Humanities and Social Sciences</subject><subject>Machining</subject><subject>Microhardness</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Nimonic alloys</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Qualitative analysis</subject><subject>Research Article - Mechanical Engineering</subject><subject>Science</subject><subject>Superalloys</subject><subject>Surface finish</subject><subject>Surface roughness</subject><subject>Thickness</subject><subject>Tool wear</subject><subject>Utility theory</subject><subject>Wear rate</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRsNR-AU8Bz9FMsrvJeiu1_oFqBRW8hXQ220babE22ot_e2BW8eZiZd3i_meFl2Smwc2BMXkQQoqwog1Q5AKdwkA04VEBzruBwrwUtSvl6nI1idAuWK1EVAGKQPU3XFrvQ0isXcWXC0pJ7gyvnnV-SRxuaNmyMR0vahjy4TesdEsXGl2TsyfRza4PbWN-ZNZkvog0fpnOtP8mOGrOOdvQ7h9nL9fR5cktn85u7yXhGUUDVUSwbaXmhWCFrlIWSqEyp0FQ15sBQ1KmXi7qGBoVBCSiT5LxqFBYMmBLD7Kzfuw3t-87GTr-1u-DTSc1FYquyUiK5eO_C0MYYbKO36WkTvjQw_ZOf7vPTKT-9z09DgkQPxWT2Sxv-Vv9DfQMy3nJG</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Sahu, Debashish</creator><creator>Sahu, Santosh Kumar</creator><creator>Jadam, Thrinadh</creator><creator>Datta, Saurav</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5550-8627</orcidid></search><sort><creationdate>20191201</creationdate><title>Electro-Discharge Machining Performance of Nimonic 80A: An Experimental Observation</title><author>Sahu, Debashish ; Sahu, Santosh Kumar ; Jadam, Thrinadh ; Datta, Saurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c6f7e258057dc7587c8a68ca9dc410c3d4106bdd1fc3ac71c7d1f229f8c501083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation analysis</topic><topic>Design of experiments</topic><topic>EDM electrodes</topic><topic>Engineering</topic><topic>Factorial design</topic><topic>Humanities and Social Sciences</topic><topic>Machining</topic><topic>Microhardness</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Nimonic alloys</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Qualitative analysis</topic><topic>Research Article - Mechanical Engineering</topic><topic>Science</topic><topic>Superalloys</topic><topic>Surface finish</topic><topic>Surface roughness</topic><topic>Thickness</topic><topic>Tool wear</topic><topic>Utility theory</topic><topic>Wear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Debashish</creatorcontrib><creatorcontrib>Sahu, Santosh Kumar</creatorcontrib><creatorcontrib>Jadam, Thrinadh</creatorcontrib><creatorcontrib>Datta, Saurav</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Debashish</au><au>Sahu, Santosh Kumar</au><au>Jadam, Thrinadh</au><au>Datta, Saurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-Discharge Machining Performance of Nimonic 80A: An Experimental Observation</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>44</volume><issue>12</issue><spage>10155</spage><epage>10167</epage><pages>10155-10167</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>The present work reports electro-discharge machining (EDM) performance of superalloy Nimonic 80A. Experiments are conducted using a two-factor three-level full factorial design of experiment in consideration with two important electrical parameters: peak discharge current and pulse-on duration. Machining performance is evaluated in purview of material removal efficiency, rate of electrode wear, and surface integrity of the EDMed part product. Apart from morphological study, surface topographic measures including surface roughness, impact of surface cracking, white layer thickness, material migration, phase alteration, and micro-indentation hardness are studied in detail. Results of qualitative analysis on crater morphology are correlated with roughness value of the machined specimen. Effects of peak current and pulse-on time on influencing EDM performance indicators are also reported. An optimal parametric combination is determined for superior process performance. In doing so, utility theory is utilized to aggregate multi-performance characteristics to compute a unique index (called overall utility degree). The parametric combination which corresponds to maximum overall utility is assumed to be the best. It is determined that maximum material removal efficiency, minimal tool wear rate, and superior surface finish can be achieved at parameters setting:
I
p
= 35 A and
T
on
= 1000 µm. The said optimal setting corresponds to overall utility value of 6.53. Confirmatory test result yields: MRR = 9.05 × 10
−3
g/s, TWR = 1.2 × 10
−5
g/s, and
R
a
= 14.1 µm at optimal setting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-019-04112-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5550-8627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2019-12, Vol.44 (12), p.10155-10167 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_2310696983 |
source | SpringerLink Journals |
subjects | Correlation analysis Design of experiments EDM electrodes Engineering Factorial design Humanities and Social Sciences Machining Microhardness Morphology multidisciplinary Nimonic alloys Parameters Performance evaluation Qualitative analysis Research Article - Mechanical Engineering Science Superalloys Surface finish Surface roughness Thickness Tool wear Utility theory Wear rate |
title | Electro-Discharge Machining Performance of Nimonic 80A: An Experimental Observation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-Discharge%20Machining%20Performance%20of%20Nimonic%2080A:%20An%20Experimental%20Observation&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Sahu,%20Debashish&rft.date=2019-12-01&rft.volume=44&rft.issue=12&rft.spage=10155&rft.epage=10167&rft.pages=10155-10167&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-019-04112-1&rft_dat=%3Cproquest_cross%3E2310696983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310696983&rft_id=info:pmid/&rfr_iscdi=true |