SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks
Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting assumptions that geometry-based methods do. The encoder-decoder network has been wid...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-10, Vol.4 (4), p.4431-4437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4437 |
---|---|
container_issue | 4 |
container_start_page | 4431 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Feng, Tuo Gu, Dongbing |
description | Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting assumptions that geometry-based methods do. The encoder-decoder network has been widely used in the depth estimation and the RCNN has brought significant improvements in the ego-motion estimation. Furthermore, the latest use of generative adversarial nets (GANs) in depth and ego-motion estimation has demonstrated that the estimation could be further improved by generating pictures in the game learning process. This paper proposes a novel unsupervised network system for visual depth and ego-motion estimation- stacked generative adversarial network. It consists of a stack of GAN layers, of which the lowest layer estimates the depth and egomotion while the higher layers estimate the spatial features. It can also capture the temporal dynamic due to the use of a recurrent representation across the layers. We select the most commonly used KITTI data set for evaluation. The evaluation results show that our proposed method can produce better or comparable results in depth and ego-motion estimation. |
doi_str_mv | 10.1109/LRA.2019.2925555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2310671731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8747446</ieee_id><sourcerecordid>2310671731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e5fc8b036f21648563e83d031d49db0084c254b47ec1cd456e41e0144940016a3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBUnsXvCx4Tt2v7CbeQq1VKBasrcclTSa4_Uji7qbSf--WFnEu8_XeG-YhdEvJkFKSPkzfsyEjNB2ylMUhLlCPcaUirqS8_Fdfo4Fza0IIjZniadxDm_kke1vOHvGidl0Ldm8clPgJoMVL47p8i2dlswNvDzivj4vWf-Gx82aXe9PU-NOEfu7zYhNoE6jBhvkecFbuwbrcmqDwBv6nsRt3g66qfOtgcM59tHgef4xeouls8jrKplHBeeIjiKsiWREuK0alSGLJIeEl4bQUabkiJBEFi8VKKChoUYpYgqBAqBCpCI_JnPfR_Um3tc13B87rddPZOpzUjFMiFVWcBhQ5oQrbOGeh0q0NX9mDpkQfXdXBVX10VZ9dDZS7E8UAwB88UUIJIfkvx3JyDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310671731</pqid></control><display><type>article</type><title>SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Tuo ; Gu, Dongbing</creator><creatorcontrib>Feng, Tuo ; Gu, Dongbing</creatorcontrib><description>Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting assumptions that geometry-based methods do. The encoder-decoder network has been widely used in the depth estimation and the RCNN has brought significant improvements in the ego-motion estimation. Furthermore, the latest use of generative adversarial nets (GANs) in depth and ego-motion estimation has demonstrated that the estimation could be further improved by generating pictures in the game learning process. This paper proposes a novel unsupervised network system for visual depth and ego-motion estimation- stacked generative adversarial network. It consists of a stack of GAN layers, of which the lowest layer estimates the depth and egomotion while the higher layers estimate the spatial features. It can also capture the temporal dynamic due to the use of a recurrent representation across the layers. We select the most commonly used KITTI data set for evaluation. The evaluation results show that our proposed method can produce better or comparable results in depth and ego-motion estimation.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2925555</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coders ; Deep Learning in Robotics and Automation ; Estimation ; Gallium nitride ; Generative adversarial networks ; Generators ; Image reconstruction ; Localization ; Machine learning ; Mapping ; Motion simulation ; Odometers ; Pictures ; SLAM ; Teaching methods ; Training ; Visual odometry</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.4431-4437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e5fc8b036f21648563e83d031d49db0084c254b47ec1cd456e41e0144940016a3</citedby><cites>FETCH-LOGICAL-c338t-e5fc8b036f21648563e83d031d49db0084c254b47ec1cd456e41e0144940016a3</cites><orcidid>0000-0002-3640-9532 ; 0000-0002-0986-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8747446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8747446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Tuo</creatorcontrib><creatorcontrib>Gu, Dongbing</creatorcontrib><title>SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting assumptions that geometry-based methods do. The encoder-decoder network has been widely used in the depth estimation and the RCNN has brought significant improvements in the ego-motion estimation. Furthermore, the latest use of generative adversarial nets (GANs) in depth and ego-motion estimation has demonstrated that the estimation could be further improved by generating pictures in the game learning process. This paper proposes a novel unsupervised network system for visual depth and ego-motion estimation- stacked generative adversarial network. It consists of a stack of GAN layers, of which the lowest layer estimates the depth and egomotion while the higher layers estimate the spatial features. It can also capture the temporal dynamic due to the use of a recurrent representation across the layers. We select the most commonly used KITTI data set for evaluation. The evaluation results show that our proposed method can produce better or comparable results in depth and ego-motion estimation.</description><subject>Coders</subject><subject>Deep Learning in Robotics and Automation</subject><subject>Estimation</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image reconstruction</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Motion simulation</subject><subject>Odometers</subject><subject>Pictures</subject><subject>SLAM</subject><subject>Teaching methods</subject><subject>Training</subject><subject>Visual odometry</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Lw0AQXUTBUnsXvCx4Tt2v7CbeQq1VKBasrcclTSa4_Uji7qbSf--WFnEu8_XeG-YhdEvJkFKSPkzfsyEjNB2ylMUhLlCPcaUirqS8_Fdfo4Fza0IIjZniadxDm_kke1vOHvGidl0Ldm8clPgJoMVL47p8i2dlswNvDzivj4vWf-Gx82aXe9PU-NOEfu7zYhNoE6jBhvkecFbuwbrcmqDwBv6nsRt3g66qfOtgcM59tHgef4xeouls8jrKplHBeeIjiKsiWREuK0alSGLJIeEl4bQUabkiJBEFi8VKKChoUYpYgqBAqBCpCI_JnPfR_Um3tc13B87rddPZOpzUjFMiFVWcBhQ5oQrbOGeh0q0NX9mDpkQfXdXBVX10VZ9dDZS7E8UAwB88UUIJIfkvx3JyDg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Feng, Tuo</creator><creator>Gu, Dongbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3640-9532</orcidid><orcidid>https://orcid.org/0000-0002-0986-2921</orcidid></search><sort><creationdate>20191001</creationdate><title>SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks</title><author>Feng, Tuo ; Gu, Dongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e5fc8b036f21648563e83d031d49db0084c254b47ec1cd456e41e0144940016a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coders</topic><topic>Deep Learning in Robotics and Automation</topic><topic>Estimation</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image reconstruction</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Motion simulation</topic><topic>Odometers</topic><topic>Pictures</topic><topic>SLAM</topic><topic>Teaching methods</topic><topic>Training</topic><topic>Visual odometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Tuo</creatorcontrib><creatorcontrib>Gu, Dongbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Tuo</au><au>Gu, Dongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>4431</spage><epage>4437</epage><pages>4431-4437</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Recently end-to-end unsupervised deep learning methods have demonstrated an impressive performance for visual depth and ego-motion estimation tasks. These data-based learning methods do not rely on the same limiting assumptions that geometry-based methods do. The encoder-decoder network has been widely used in the depth estimation and the RCNN has brought significant improvements in the ego-motion estimation. Furthermore, the latest use of generative adversarial nets (GANs) in depth and ego-motion estimation has demonstrated that the estimation could be further improved by generating pictures in the game learning process. This paper proposes a novel unsupervised network system for visual depth and ego-motion estimation- stacked generative adversarial network. It consists of a stack of GAN layers, of which the lowest layer estimates the depth and egomotion while the higher layers estimate the spatial features. It can also capture the temporal dynamic due to the use of a recurrent representation across the layers. We select the most commonly used KITTI data set for evaluation. The evaluation results show that our proposed method can produce better or comparable results in depth and ego-motion estimation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2925555</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3640-9532</orcidid><orcidid>https://orcid.org/0000-0002-0986-2921</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.4431-4437 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2310671731 |
source | IEEE Electronic Library (IEL) |
subjects | Coders Deep Learning in Robotics and Automation Estimation Gallium nitride Generative adversarial networks Generators Image reconstruction Localization Machine learning Mapping Motion simulation Odometers Pictures SLAM Teaching methods Training Visual odometry |
title | SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SGANVO:%20Unsupervised%20Deep%20Visual%20Odometry%20and%20Depth%20Estimation%20With%20Stacked%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Feng,%20Tuo&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=4431&rft.epage=4437&rft.pages=4431-4437&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2925555&rft_dat=%3Cproquest_RIE%3E2310671731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310671731&rft_id=info:pmid/&rft_ieee_id=8747446&rfr_iscdi=true |