Saxitoxin and tetrodotoxin bioavailability increases in future oceans

Increasing atmospheric CO 2 levels are largely absorbed by the ocean, decreasing surface water pH 1 . In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life 2 . Interactions between marine organisms are known to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature climate change 2019-11, Vol.9 (11), p.840-844
Hauptverfasser: Roggatz, C. C., Fletcher, N., Benoit, D. M., Algar, A. C., Doroff, A., Wright, B., Wollenberg Valero, K. C., Hardege, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue 11
container_start_page 840
container_title Nature climate change
container_volume 9
creator Roggatz, C. C.
Fletcher, N.
Benoit, D. M.
Algar, A. C.
Doroff, A.
Wright, B.
Wollenberg Valero, K. C.
Hardege, J. D.
description Increasing atmospheric CO 2 levels are largely absorbed by the ocean, decreasing surface water pH 1 . In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life 2 . Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules 3 in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams, Saxidomus gigantea , show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services. Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.
doi_str_mv 10.1038/s41558-019-0589-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310418308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310418308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwVPFeTpknToyzrH1jwoIK3ME2nkqU2a5LK7rc3paIn5zLD473fwCPkktFrRrm6CSUTQuWU1TkVqs75CVmwKimyqtXp763ezskqhB1NUzHJZb0gm2c42OgOdshgaLOI0bvWzUJjHXyB7aGxvY3HzA7GIwQM6cq6MY4eM2cQhnBBzjroA65-9pK83m1e1g_59un-cX27zU1ZiJgrLrkRApGxRhkjuxZ5wVlpDMiOQiur5KOGUywYmAqgLJCLuikF7VTFOV-Sq5m79-5zxBD1zo1-SC914tCSKU5VcrHZZbwLwWOn995-gD9qRvVUmJ4L06kwPRWmJ3IxZ0LyDu_o_8j_h74BzlNuWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310418308</pqid></control><display><type>article</type><title>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Roggatz, C. C. ; Fletcher, N. ; Benoit, D. M. ; Algar, A. C. ; Doroff, A. ; Wright, B. ; Wollenberg Valero, K. C. ; Hardege, J. D.</creator><creatorcontrib>Roggatz, C. C. ; Fletcher, N. ; Benoit, D. M. ; Algar, A. C. ; Doroff, A. ; Wright, B. ; Wollenberg Valero, K. C. ; Hardege, J. D.</creatorcontrib><description>Increasing atmospheric CO 2 levels are largely absorbed by the ocean, decreasing surface water pH 1 . In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life 2 . Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules 3 in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams, Saxidomus gigantea , show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services. Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-019-0589-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/158/1144 ; 704/158/2165 ; 704/172/169 ; Algal blooms ; Bioavailability ; Biomolecules ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Clams ; Climate Change ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Ecosystem services ; Ecosystem stability ; Ecotoxicology ; Environment ; Environmental Law/Policy/Ecojustice ; Eutrophication ; Foraging ; Interspecific relationships ; Letter ; Marine ecosystems ; Marine organisms ; Neurotoxins ; Ocean temperature ; Oceans ; Organic chemistry ; Paralytic shellfish poisoning ; pH effects ; Predation ; Reproduction (biology) ; Saxitoxin ; Shellfish ; Surface water ; Sustainability ; Tetrodotoxin ; Toxicity ; Toxins ; Water quality</subject><ispartof>Nature climate change, 2019-11, Vol.9 (11), p.840-844</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</citedby><cites>FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</cites><orcidid>0000-0002-7773-6863 ; 0000-0001-8095-0097 ; 0000-0001-8858-1804 ; 0000-0002-8566-3078 ; 0000-0002-7815-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Roggatz, C. C.</creatorcontrib><creatorcontrib>Fletcher, N.</creatorcontrib><creatorcontrib>Benoit, D. M.</creatorcontrib><creatorcontrib>Algar, A. C.</creatorcontrib><creatorcontrib>Doroff, A.</creatorcontrib><creatorcontrib>Wright, B.</creatorcontrib><creatorcontrib>Wollenberg Valero, K. C.</creatorcontrib><creatorcontrib>Hardege, J. D.</creatorcontrib><title>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><description>Increasing atmospheric CO 2 levels are largely absorbed by the ocean, decreasing surface water pH 1 . In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life 2 . Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules 3 in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams, Saxidomus gigantea , show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services. Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.</description><subject>119/118</subject><subject>631/158/1144</subject><subject>704/158/2165</subject><subject>704/172/169</subject><subject>Algal blooms</subject><subject>Bioavailability</subject><subject>Biomolecules</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Clams</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Ecosystem services</subject><subject>Ecosystem stability</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Eutrophication</subject><subject>Foraging</subject><subject>Interspecific relationships</subject><subject>Letter</subject><subject>Marine ecosystems</subject><subject>Marine organisms</subject><subject>Neurotoxins</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Paralytic shellfish poisoning</subject><subject>pH effects</subject><subject>Predation</subject><subject>Reproduction (biology)</subject><subject>Saxitoxin</subject><subject>Shellfish</subject><subject>Surface water</subject><subject>Sustainability</subject><subject>Tetrodotoxin</subject><subject>Toxicity</subject><subject>Toxins</subject><subject>Water quality</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouKz7AbwVPFeTpknToyzrH1jwoIK3ME2nkqU2a5LK7rc3paIn5zLD473fwCPkktFrRrm6CSUTQuWU1TkVqs75CVmwKimyqtXp763ezskqhB1NUzHJZb0gm2c42OgOdshgaLOI0bvWzUJjHXyB7aGxvY3HzA7GIwQM6cq6MY4eM2cQhnBBzjroA65-9pK83m1e1g_59un-cX27zU1ZiJgrLrkRApGxRhkjuxZ5wVlpDMiOQiur5KOGUywYmAqgLJCLuikF7VTFOV-Sq5m79-5zxBD1zo1-SC914tCSKU5VcrHZZbwLwWOn995-gD9qRvVUmJ4L06kwPRWmJ3IxZ0LyDu_o_8j_h74BzlNuWw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Roggatz, C. C.</creator><creator>Fletcher, N.</creator><creator>Benoit, D. M.</creator><creator>Algar, A. C.</creator><creator>Doroff, A.</creator><creator>Wright, B.</creator><creator>Wollenberg Valero, K. C.</creator><creator>Hardege, J. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0001-8095-0097</orcidid><orcidid>https://orcid.org/0000-0001-8858-1804</orcidid><orcidid>https://orcid.org/0000-0002-8566-3078</orcidid><orcidid>https://orcid.org/0000-0002-7815-3969</orcidid></search><sort><creationdate>20191101</creationdate><title>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</title><author>Roggatz, C. C. ; Fletcher, N. ; Benoit, D. M. ; Algar, A. C. ; Doroff, A. ; Wright, B. ; Wollenberg Valero, K. C. ; Hardege, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>631/158/1144</topic><topic>704/158/2165</topic><topic>704/172/169</topic><topic>Algal blooms</topic><topic>Bioavailability</topic><topic>Biomolecules</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Clams</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Ecosystem services</topic><topic>Ecosystem stability</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Eutrophication</topic><topic>Foraging</topic><topic>Interspecific relationships</topic><topic>Letter</topic><topic>Marine ecosystems</topic><topic>Marine organisms</topic><topic>Neurotoxins</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Paralytic shellfish poisoning</topic><topic>pH effects</topic><topic>Predation</topic><topic>Reproduction (biology)</topic><topic>Saxitoxin</topic><topic>Shellfish</topic><topic>Surface water</topic><topic>Sustainability</topic><topic>Tetrodotoxin</topic><topic>Toxicity</topic><topic>Toxins</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roggatz, C. C.</creatorcontrib><creatorcontrib>Fletcher, N.</creatorcontrib><creatorcontrib>Benoit, D. M.</creatorcontrib><creatorcontrib>Algar, A. C.</creatorcontrib><creatorcontrib>Doroff, A.</creatorcontrib><creatorcontrib>Wright, B.</creatorcontrib><creatorcontrib>Wollenberg Valero, K. C.</creatorcontrib><creatorcontrib>Hardege, J. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roggatz, C. C.</au><au>Fletcher, N.</au><au>Benoit, D. M.</au><au>Algar, A. C.</au><au>Doroff, A.</au><au>Wright, B.</au><au>Wollenberg Valero, K. C.</au><au>Hardege, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>840</spage><epage>844</epage><pages>840-844</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Increasing atmospheric CO 2 levels are largely absorbed by the ocean, decreasing surface water pH 1 . In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life 2 . Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules 3 in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams, Saxidomus gigantea , show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services. Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-019-0589-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0001-8095-0097</orcidid><orcidid>https://orcid.org/0000-0001-8858-1804</orcidid><orcidid>https://orcid.org/0000-0002-8566-3078</orcidid><orcidid>https://orcid.org/0000-0002-7815-3969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-678X
ispartof Nature climate change, 2019-11, Vol.9 (11), p.840-844
issn 1758-678X
1758-6798
language eng
recordid cdi_proquest_journals_2310418308
source Nature; Alma/SFX Local Collection
subjects 119/118
631/158/1144
704/158/2165
704/172/169
Algal blooms
Bioavailability
Biomolecules
Carbon dioxide
Carbon dioxide atmospheric concentrations
Clams
Climate Change
Climate Change/Climate Change Impacts
Earth and Environmental Science
Ecosystem services
Ecosystem stability
Ecotoxicology
Environment
Environmental Law/Policy/Ecojustice
Eutrophication
Foraging
Interspecific relationships
Letter
Marine ecosystems
Marine organisms
Neurotoxins
Ocean temperature
Oceans
Organic chemistry
Paralytic shellfish poisoning
pH effects
Predation
Reproduction (biology)
Saxitoxin
Shellfish
Surface water
Sustainability
Tetrodotoxin
Toxicity
Toxins
Water quality
title Saxitoxin and tetrodotoxin bioavailability increases in future oceans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saxitoxin%20and%20tetrodotoxin%20bioavailability%20increases%20in%20future%20oceans&rft.jtitle=Nature%20climate%20change&rft.au=Roggatz,%20C.%20C.&rft.date=2019-11-01&rft.volume=9&rft.issue=11&rft.spage=840&rft.epage=844&rft.pages=840-844&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-019-0589-3&rft_dat=%3Cproquest_cross%3E2310418308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310418308&rft_id=info:pmid/&rfr_iscdi=true