Saxitoxin and tetrodotoxin bioavailability increases in future oceans
Increasing atmospheric CO 2 levels are largely absorbed by the ocean, decreasing surface water pH 1 . In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life 2 . Interactions between marine organisms are known to de...
Gespeichert in:
Veröffentlicht in: | Nature climate change 2019-11, Vol.9 (11), p.840-844 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 11 |
container_start_page | 840 |
container_title | Nature climate change |
container_volume | 9 |
creator | Roggatz, C. C. Fletcher, N. Benoit, D. M. Algar, A. C. Doroff, A. Wright, B. Wollenberg Valero, K. C. Hardege, J. D. |
description | Increasing atmospheric CO
2
levels are largely absorbed by the ocean, decreasing surface water pH
1
. In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life
2
. Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules
3
in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams,
Saxidomus gigantea
, show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services.
Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam. |
doi_str_mv | 10.1038/s41558-019-0589-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310418308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310418308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwVPFeTpknToyzrH1jwoIK3ME2nkqU2a5LK7rc3paIn5zLD473fwCPkktFrRrm6CSUTQuWU1TkVqs75CVmwKimyqtXp763ezskqhB1NUzHJZb0gm2c42OgOdshgaLOI0bvWzUJjHXyB7aGxvY3HzA7GIwQM6cq6MY4eM2cQhnBBzjroA65-9pK83m1e1g_59un-cX27zU1ZiJgrLrkRApGxRhkjuxZ5wVlpDMiOQiur5KOGUywYmAqgLJCLuikF7VTFOV-Sq5m79-5zxBD1zo1-SC914tCSKU5VcrHZZbwLwWOn995-gD9qRvVUmJ4L06kwPRWmJ3IxZ0LyDu_o_8j_h74BzlNuWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310418308</pqid></control><display><type>article</type><title>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Roggatz, C. C. ; Fletcher, N. ; Benoit, D. M. ; Algar, A. C. ; Doroff, A. ; Wright, B. ; Wollenberg Valero, K. C. ; Hardege, J. D.</creator><creatorcontrib>Roggatz, C. C. ; Fletcher, N. ; Benoit, D. M. ; Algar, A. C. ; Doroff, A. ; Wright, B. ; Wollenberg Valero, K. C. ; Hardege, J. D.</creatorcontrib><description>Increasing atmospheric CO
2
levels are largely absorbed by the ocean, decreasing surface water pH
1
. In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life
2
. Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules
3
in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams,
Saxidomus gigantea
, show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services.
Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.</description><identifier>ISSN: 1758-678X</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-019-0589-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/158/1144 ; 704/158/2165 ; 704/172/169 ; Algal blooms ; Bioavailability ; Biomolecules ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Clams ; Climate Change ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Ecosystem services ; Ecosystem stability ; Ecotoxicology ; Environment ; Environmental Law/Policy/Ecojustice ; Eutrophication ; Foraging ; Interspecific relationships ; Letter ; Marine ecosystems ; Marine organisms ; Neurotoxins ; Ocean temperature ; Oceans ; Organic chemistry ; Paralytic shellfish poisoning ; pH effects ; Predation ; Reproduction (biology) ; Saxitoxin ; Shellfish ; Surface water ; Sustainability ; Tetrodotoxin ; Toxicity ; Toxins ; Water quality</subject><ispartof>Nature climate change, 2019-11, Vol.9 (11), p.840-844</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</citedby><cites>FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</cites><orcidid>0000-0002-7773-6863 ; 0000-0001-8095-0097 ; 0000-0001-8858-1804 ; 0000-0002-8566-3078 ; 0000-0002-7815-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Roggatz, C. C.</creatorcontrib><creatorcontrib>Fletcher, N.</creatorcontrib><creatorcontrib>Benoit, D. M.</creatorcontrib><creatorcontrib>Algar, A. C.</creatorcontrib><creatorcontrib>Doroff, A.</creatorcontrib><creatorcontrib>Wright, B.</creatorcontrib><creatorcontrib>Wollenberg Valero, K. C.</creatorcontrib><creatorcontrib>Hardege, J. D.</creatorcontrib><title>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</title><title>Nature climate change</title><addtitle>Nat. Clim. Chang</addtitle><description>Increasing atmospheric CO
2
levels are largely absorbed by the ocean, decreasing surface water pH
1
. In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life
2
. Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules
3
in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams,
Saxidomus gigantea
, show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services.
Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.</description><subject>119/118</subject><subject>631/158/1144</subject><subject>704/158/2165</subject><subject>704/172/169</subject><subject>Algal blooms</subject><subject>Bioavailability</subject><subject>Biomolecules</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Clams</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Ecosystem services</subject><subject>Ecosystem stability</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Eutrophication</subject><subject>Foraging</subject><subject>Interspecific relationships</subject><subject>Letter</subject><subject>Marine ecosystems</subject><subject>Marine organisms</subject><subject>Neurotoxins</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Paralytic shellfish poisoning</subject><subject>pH effects</subject><subject>Predation</subject><subject>Reproduction (biology)</subject><subject>Saxitoxin</subject><subject>Shellfish</subject><subject>Surface water</subject><subject>Sustainability</subject><subject>Tetrodotoxin</subject><subject>Toxicity</subject><subject>Toxins</subject><subject>Water quality</subject><issn>1758-678X</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouKz7AbwVPFeTpknToyzrH1jwoIK3ME2nkqU2a5LK7rc3paIn5zLD473fwCPkktFrRrm6CSUTQuWU1TkVqs75CVmwKimyqtXp763ezskqhB1NUzHJZb0gm2c42OgOdshgaLOI0bvWzUJjHXyB7aGxvY3HzA7GIwQM6cq6MY4eM2cQhnBBzjroA65-9pK83m1e1g_59un-cX27zU1ZiJgrLrkRApGxRhkjuxZ5wVlpDMiOQiur5KOGUywYmAqgLJCLuikF7VTFOV-Sq5m79-5zxBD1zo1-SC914tCSKU5VcrHZZbwLwWOn995-gD9qRvVUmJ4L06kwPRWmJ3IxZ0LyDu_o_8j_h74BzlNuWw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Roggatz, C. C.</creator><creator>Fletcher, N.</creator><creator>Benoit, D. M.</creator><creator>Algar, A. C.</creator><creator>Doroff, A.</creator><creator>Wright, B.</creator><creator>Wollenberg Valero, K. C.</creator><creator>Hardege, J. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0001-8095-0097</orcidid><orcidid>https://orcid.org/0000-0001-8858-1804</orcidid><orcidid>https://orcid.org/0000-0002-8566-3078</orcidid><orcidid>https://orcid.org/0000-0002-7815-3969</orcidid></search><sort><creationdate>20191101</creationdate><title>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</title><author>Roggatz, C. C. ; Fletcher, N. ; Benoit, D. M. ; Algar, A. C. ; Doroff, A. ; Wright, B. ; Wollenberg Valero, K. C. ; Hardege, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8363c55ee11b8cc6fde32314cca6f0ad67c420c30e21ac7aa42e359b450f87333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>631/158/1144</topic><topic>704/158/2165</topic><topic>704/172/169</topic><topic>Algal blooms</topic><topic>Bioavailability</topic><topic>Biomolecules</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Clams</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Ecosystem services</topic><topic>Ecosystem stability</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Eutrophication</topic><topic>Foraging</topic><topic>Interspecific relationships</topic><topic>Letter</topic><topic>Marine ecosystems</topic><topic>Marine organisms</topic><topic>Neurotoxins</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Paralytic shellfish poisoning</topic><topic>pH effects</topic><topic>Predation</topic><topic>Reproduction (biology)</topic><topic>Saxitoxin</topic><topic>Shellfish</topic><topic>Surface water</topic><topic>Sustainability</topic><topic>Tetrodotoxin</topic><topic>Toxicity</topic><topic>Toxins</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roggatz, C. C.</creatorcontrib><creatorcontrib>Fletcher, N.</creatorcontrib><creatorcontrib>Benoit, D. M.</creatorcontrib><creatorcontrib>Algar, A. C.</creatorcontrib><creatorcontrib>Doroff, A.</creatorcontrib><creatorcontrib>Wright, B.</creatorcontrib><creatorcontrib>Wollenberg Valero, K. C.</creatorcontrib><creatorcontrib>Hardege, J. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roggatz, C. C.</au><au>Fletcher, N.</au><au>Benoit, D. M.</au><au>Algar, A. C.</au><au>Doroff, A.</au><au>Wright, B.</au><au>Wollenberg Valero, K. C.</au><au>Hardege, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saxitoxin and tetrodotoxin bioavailability increases in future oceans</atitle><jtitle>Nature climate change</jtitle><stitle>Nat. Clim. Chang</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>840</spage><epage>844</epage><pages>840-844</pages><issn>1758-678X</issn><eissn>1758-6798</eissn><abstract>Increasing atmospheric CO
2
levels are largely absorbed by the ocean, decreasing surface water pH
1
. In combination with increasing ocean temperatures, these changes have been identified as a major sustainability threat to future marine life
2
. Interactions between marine organisms are known to depend on biomolecules, although the influence of oceanic pH on their bioavailability and functionality remains unexplored. Here we show that global change substantially impacts two ecological keystone molecules
3
in the ocean, the paralytic neurotoxins saxitoxin and tetrodotoxin. Increasing temperatures and declining pH increase the abundance of their toxic forms in the water. Our geospatial global model predicts where this increased toxicity could intensify the devastating impact of harmful algal blooms, for example through an increased incidence of paralytic shellfish poisoning. Calculations of future saxitoxin toxicity levels in Alaskan clams,
Saxidomus gigantea
, show critical exceedance of limits safe for consumption. Our findings for saxitoxin and tetrodotoxin exemplify potential consequences of changing pH and temperature on chemicals dissolved in the sea. This reveals major implications not only for ecotoxicology, but also for chemical signals that mediate species interactions such as foraging, reproduction or predation in the ocean, with unexplored consequences for ecosystem stability and ecosystem services.
Ocean warming and acidification will affect the structure and bioavailability of biomolecules. The toxic form of two neurotoxins will increase with climate change, presenting an ecotoxicology risk with global hotspots as exemplified by saxitoxin toxicity in Alaskan butter clam.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-019-0589-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7773-6863</orcidid><orcidid>https://orcid.org/0000-0001-8095-0097</orcidid><orcidid>https://orcid.org/0000-0001-8858-1804</orcidid><orcidid>https://orcid.org/0000-0002-8566-3078</orcidid><orcidid>https://orcid.org/0000-0002-7815-3969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-678X |
ispartof | Nature climate change, 2019-11, Vol.9 (11), p.840-844 |
issn | 1758-678X 1758-6798 |
language | eng |
recordid | cdi_proquest_journals_2310418308 |
source | Nature; Alma/SFX Local Collection |
subjects | 119/118 631/158/1144 704/158/2165 704/172/169 Algal blooms Bioavailability Biomolecules Carbon dioxide Carbon dioxide atmospheric concentrations Clams Climate Change Climate Change/Climate Change Impacts Earth and Environmental Science Ecosystem services Ecosystem stability Ecotoxicology Environment Environmental Law/Policy/Ecojustice Eutrophication Foraging Interspecific relationships Letter Marine ecosystems Marine organisms Neurotoxins Ocean temperature Oceans Organic chemistry Paralytic shellfish poisoning pH effects Predation Reproduction (biology) Saxitoxin Shellfish Surface water Sustainability Tetrodotoxin Toxicity Toxins Water quality |
title | Saxitoxin and tetrodotoxin bioavailability increases in future oceans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saxitoxin%20and%20tetrodotoxin%20bioavailability%20increases%20in%20future%20oceans&rft.jtitle=Nature%20climate%20change&rft.au=Roggatz,%20C.%20C.&rft.date=2019-11-01&rft.volume=9&rft.issue=11&rft.spage=840&rft.epage=844&rft.pages=840-844&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-019-0589-3&rft_dat=%3Cproquest_cross%3E2310418308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310418308&rft_id=info:pmid/&rfr_iscdi=true |