The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method

Utilizing ball-type auto-balancer in rotating systems is a popular method in industry in order to eliminate the rotational vibration. Recently, by using numerical methods, it is shown that a ball-type auto-balancer equipped with both the radial and peripheral springs, ball-spring automatic balancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2019-11, Vol.89 (11), p.2229-2243
Hauptverfasser: Rezaee, Mousa, Ghorbanpour, Leila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2243
container_issue 11
container_start_page 2229
container_title Archive of applied mechanics (1991)
container_volume 89
creator Rezaee, Mousa
Ghorbanpour, Leila
description Utilizing ball-type auto-balancer in rotating systems is a popular method in industry in order to eliminate the rotational vibration. Recently, by using numerical methods, it is shown that a ball-type auto-balancer equipped with both the radial and peripheral springs, ball-spring automatic balancer (AB), is an improved model. In this paper, due to the advantages of analytical methods over the numerical ones, the complete system dynamics, i.e., the stability analysis and the time response, of the rotor equipped with ball-spring AB is analyzed by the multiple scales method as a unified technique. Therefore, with no need for implementing any other stability theories, the stability analysis is a definite advantage of this method due to the less computation cost. Moreover, the time responses show a good agreement with those obtained through the numerical method. Finally, for the first time, the influence of the peripheral springs on the time responses and the stable equilibrium points of the rotor with ball-spring AB is studied in details. The results show that the peripheral springs decrease the vibration amplitude at the transient and leave some residual imbalance at the steady state and accordingly, there is a compromise between the system working performance at the transient and the steady state.
doi_str_mv 10.1007/s00419-019-01573-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310414476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310414476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-fa806abc84d139b2052d828150c2e91962f813d48579db6bd270451a36e95e4d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0qbNURa_YMHLeg5pkrpd0nZN0kP_vXErePMwDAzPO_A-CN1SuKcA1UMEKKgkcJqy4kScoRUtOCMganqOViC5JLTk_BJdxXiAzJcMVqjZ7R0exsF3g9MB23nQfWewHrSfYxfx2OKUiUZ7T-IxdMMn1lMae50yla96MC7gZj5R_eRTd_QOR6O9i7h3aT_aa3TRah_dze9eo4_np93mlWzfX942j1tiuOCJtLoGoRtTF5Zy2TAoma1ZTUswzEkqBWtrym1Rl5W0jWgsq3IHqrlwsnSF5Wt0t_w9hvFrcjGpwziFXCQqxmn2UxSVyBRbKBPGGINrVW7V6zArCurHpVpcKjhNdql-QnwJLQpc-Hv9T-obX6V29Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310414476</pqid></control><display><type>article</type><title>The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method</title><source>Springer Nature - Complete Springer Journals</source><creator>Rezaee, Mousa ; Ghorbanpour, Leila</creator><creatorcontrib>Rezaee, Mousa ; Ghorbanpour, Leila</creatorcontrib><description>Utilizing ball-type auto-balancer in rotating systems is a popular method in industry in order to eliminate the rotational vibration. Recently, by using numerical methods, it is shown that a ball-type auto-balancer equipped with both the radial and peripheral springs, ball-spring automatic balancer (AB), is an improved model. In this paper, due to the advantages of analytical methods over the numerical ones, the complete system dynamics, i.e., the stability analysis and the time response, of the rotor equipped with ball-spring AB is analyzed by the multiple scales method as a unified technique. Therefore, with no need for implementing any other stability theories, the stability analysis is a definite advantage of this method due to the less computation cost. Moreover, the time responses show a good agreement with those obtained through the numerical method. Finally, for the first time, the influence of the peripheral springs on the time responses and the stable equilibrium points of the rotor with ball-spring AB is studied in details. The results show that the peripheral springs decrease the vibration amplitude at the transient and leave some residual imbalance at the steady state and accordingly, there is a compromise between the system working performance at the transient and the steady state.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-019-01573-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Dynamic stability ; Dynamical systems ; Engineering ; Nonlinear analysis ; Nonlinear dynamics ; Numerical analysis ; Numerical methods ; Original ; Rotation ; Springs (elastic) ; Stability analysis ; Steady state ; System dynamics ; Theoretical and Applied Mechanics ; Time response ; Vibration</subject><ispartof>Archive of applied mechanics (1991), 2019-11, Vol.89 (11), p.2229-2243</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-fa806abc84d139b2052d828150c2e91962f813d48579db6bd270451a36e95e4d3</citedby><cites>FETCH-LOGICAL-c363t-fa806abc84d139b2052d828150c2e91962f813d48579db6bd270451a36e95e4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-019-01573-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-019-01573-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rezaee, Mousa</creatorcontrib><creatorcontrib>Ghorbanpour, Leila</creatorcontrib><title>The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Utilizing ball-type auto-balancer in rotating systems is a popular method in industry in order to eliminate the rotational vibration. Recently, by using numerical methods, it is shown that a ball-type auto-balancer equipped with both the radial and peripheral springs, ball-spring automatic balancer (AB), is an improved model. In this paper, due to the advantages of analytical methods over the numerical ones, the complete system dynamics, i.e., the stability analysis and the time response, of the rotor equipped with ball-spring AB is analyzed by the multiple scales method as a unified technique. Therefore, with no need for implementing any other stability theories, the stability analysis is a definite advantage of this method due to the less computation cost. Moreover, the time responses show a good agreement with those obtained through the numerical method. Finally, for the first time, the influence of the peripheral springs on the time responses and the stable equilibrium points of the rotor with ball-spring AB is studied in details. The results show that the peripheral springs decrease the vibration amplitude at the transient and leave some residual imbalance at the steady state and accordingly, there is a compromise between the system working performance at the transient and the steady state.</description><subject>Classical Mechanics</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Original</subject><subject>Rotation</subject><subject>Springs (elastic)</subject><subject>Stability analysis</subject><subject>Steady state</subject><subject>System dynamics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time response</subject><subject>Vibration</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0qbNURa_YMHLeg5pkrpd0nZN0kP_vXErePMwDAzPO_A-CN1SuKcA1UMEKKgkcJqy4kScoRUtOCMganqOViC5JLTk_BJdxXiAzJcMVqjZ7R0exsF3g9MB23nQfWewHrSfYxfx2OKUiUZ7T-IxdMMn1lMae50yla96MC7gZj5R_eRTd_QOR6O9i7h3aT_aa3TRah_dze9eo4_np93mlWzfX942j1tiuOCJtLoGoRtTF5Zy2TAoma1ZTUswzEkqBWtrym1Rl5W0jWgsq3IHqrlwsnSF5Wt0t_w9hvFrcjGpwziFXCQqxmn2UxSVyBRbKBPGGINrVW7V6zArCurHpVpcKjhNdql-QnwJLQpc-Hv9T-obX6V29Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Rezaee, Mousa</creator><creator>Ghorbanpour, Leila</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method</title><author>Rezaee, Mousa ; Ghorbanpour, Leila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-fa806abc84d139b2052d828150c2e91962f813d48579db6bd270451a36e95e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical Mechanics</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Original</topic><topic>Rotation</topic><topic>Springs (elastic)</topic><topic>Stability analysis</topic><topic>Steady state</topic><topic>System dynamics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time response</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaee, Mousa</creatorcontrib><creatorcontrib>Ghorbanpour, Leila</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaee, Mousa</au><au>Ghorbanpour, Leila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>89</volume><issue>11</issue><spage>2229</spage><epage>2243</epage><pages>2229-2243</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Utilizing ball-type auto-balancer in rotating systems is a popular method in industry in order to eliminate the rotational vibration. Recently, by using numerical methods, it is shown that a ball-type auto-balancer equipped with both the radial and peripheral springs, ball-spring automatic balancer (AB), is an improved model. In this paper, due to the advantages of analytical methods over the numerical ones, the complete system dynamics, i.e., the stability analysis and the time response, of the rotor equipped with ball-spring AB is analyzed by the multiple scales method as a unified technique. Therefore, with no need for implementing any other stability theories, the stability analysis is a definite advantage of this method due to the less computation cost. Moreover, the time responses show a good agreement with those obtained through the numerical method. Finally, for the first time, the influence of the peripheral springs on the time responses and the stable equilibrium points of the rotor with ball-spring AB is studied in details. The results show that the peripheral springs decrease the vibration amplitude at the transient and leave some residual imbalance at the steady state and accordingly, there is a compromise between the system working performance at the transient and the steady state.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-019-01573-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2019-11, Vol.89 (11), p.2229-2243
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_2310414476
source Springer Nature - Complete Springer Journals
subjects Classical Mechanics
Dynamic stability
Dynamical systems
Engineering
Nonlinear analysis
Nonlinear dynamics
Numerical analysis
Numerical methods
Original
Rotation
Springs (elastic)
Stability analysis
Steady state
System dynamics
Theoretical and Applied Mechanics
Time response
Vibration
title The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nonlinear%20dynamic%20analysis%20of%20the%20ball-spring%20automatic%20balancer%20by%20the%20multiple%20scales%20method&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Rezaee,%20Mousa&rft.date=2019-11-01&rft.volume=89&rft.issue=11&rft.spage=2229&rft.epage=2243&rft.pages=2229-2243&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-019-01573-6&rft_dat=%3Cproquest_cross%3E2310414476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310414476&rft_id=info:pmid/&rfr_iscdi=true