Global existence of solutions to differential equations
Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.
Gespeichert in:
Veröffentlicht in: | SeMA journal 2019-12, Vol.76 (4), p.625-628 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 628 |
---|---|
container_issue | 4 |
container_start_page | 625 |
container_title | SeMA journal |
container_volume | 76 |
creator | Ramm, Alexander G. |
description | Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered. |
doi_str_mv | 10.1007/s40324-019-00199-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310414475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310414475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1856-e108639fc69d728681494327136a814889f0521c60d5d2fa4d31c6d77e9d210f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19F7k0weSylahYIbXYfpJJGRcdImM6D_3rQjuHNzH9xzzoWPkGuEWwRQd1kAZ4ICGgqlGCrPyIIxjVRpVZ8f51pQboBdklXO3Q6Y0TUDhguiNn3cNX3lv7o8-qH1VQxVjv00dnHI1Rgr14Xgkx_G7ig7TM3pckUuQtNnv_rtS_L2-PC6fqLbl83z-n5LW9S1pB5BS25CK41TTEuNwgjOFHLZlFlrE6Bm2EpwtWOhEY6XxSnljWMIgS_JzZy7T_Ew-Tzajziloby0jCMIFELVRcVmVZtizskHu0_dZ5O-LYI9MrIzI1vw2BMjK4uJz6ZcxMO7T3_R_7h-ANccZ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310414475</pqid></control><display><type>article</type><title>Global existence of solutions to differential equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ramm, Alexander G.</creator><creatorcontrib>Ramm, Alexander G.</creatorcontrib><description>Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.</description><identifier>ISSN: 2254-3902</identifier><identifier>EISSN: 2281-7875</identifier><identifier>DOI: 10.1007/s40324-019-00199-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Eigenvalues ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear systems</subject><ispartof>SeMA journal, 2019-12, Vol.76 (4), p.625-628</ispartof><rights>Sociedad Española de Matemática Aplicada 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1856-e108639fc69d728681494327136a814889f0521c60d5d2fa4d31c6d77e9d210f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40324-019-00199-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40324-019-00199-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ramm, Alexander G.</creatorcontrib><title>Global existence of solutions to differential equations</title><title>SeMA journal</title><addtitle>SeMA</addtitle><description>Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.</description><subject>Applications of Mathematics</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><issn>2254-3902</issn><issn>2281-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19F7k0weSylahYIbXYfpJJGRcdImM6D_3rQjuHNzH9xzzoWPkGuEWwRQd1kAZ4ICGgqlGCrPyIIxjVRpVZ8f51pQboBdklXO3Q6Y0TUDhguiNn3cNX3lv7o8-qH1VQxVjv00dnHI1Rgr14Xgkx_G7ig7TM3pckUuQtNnv_rtS_L2-PC6fqLbl83z-n5LW9S1pB5BS25CK41TTEuNwgjOFHLZlFlrE6Bm2EpwtWOhEY6XxSnljWMIgS_JzZy7T_Ew-Tzajziloby0jCMIFELVRcVmVZtizskHu0_dZ5O-LYI9MrIzI1vw2BMjK4uJz6ZcxMO7T3_R_7h-ANccZ3Q</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ramm, Alexander G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Global existence of solutions to differential equations</title><author>Ramm, Alexander G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1856-e108639fc69d728681494327136a814889f0521c60d5d2fa4d31c6d77e9d210f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramm, Alexander G.</creatorcontrib><collection>CrossRef</collection><jtitle>SeMA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramm, Alexander G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global existence of solutions to differential equations</atitle><jtitle>SeMA journal</jtitle><stitle>SeMA</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>76</volume><issue>4</issue><spage>625</spage><epage>628</epage><pages>625-628</pages><issn>2254-3902</issn><eissn>2281-7875</eissn><abstract>Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40324-019-00199-6</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2254-3902 |
ispartof | SeMA journal, 2019-12, Vol.76 (4), p.625-628 |
issn | 2254-3902 2281-7875 |
language | eng |
recordid | cdi_proquest_journals_2310414475 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Eigenvalues Mathematical analysis Mathematics Mathematics and Statistics Nonlinear differential equations Nonlinear equations Nonlinear systems |
title | Global existence of solutions to differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20existence%20of%20solutions%20to%20differential%20equations&rft.jtitle=SeMA%20journal&rft.au=Ramm,%20Alexander%20G.&rft.date=2019-12-01&rft.volume=76&rft.issue=4&rft.spage=625&rft.epage=628&rft.pages=625-628&rft.issn=2254-3902&rft.eissn=2281-7875&rft_id=info:doi/10.1007/s40324-019-00199-6&rft_dat=%3Cproquest_cross%3E2310414475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310414475&rft_id=info:pmid/&rfr_iscdi=true |