Global existence of solutions to differential equations

Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SeMA journal 2019-12, Vol.76 (4), p.625-628
1. Verfasser: Ramm, Alexander G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 4
container_start_page 625
container_title SeMA journal
container_volume 76
creator Ramm, Alexander G.
description Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.
doi_str_mv 10.1007/s40324-019-00199-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310414475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310414475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1856-e108639fc69d728681494327136a814889f0521c60d5d2fa4d31c6d77e9d210f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19F7k0weSylahYIbXYfpJJGRcdImM6D_3rQjuHNzH9xzzoWPkGuEWwRQd1kAZ4ICGgqlGCrPyIIxjVRpVZ8f51pQboBdklXO3Q6Y0TUDhguiNn3cNX3lv7o8-qH1VQxVjv00dnHI1Rgr14Xgkx_G7ig7TM3pckUuQtNnv_rtS_L2-PC6fqLbl83z-n5LW9S1pB5BS25CK41TTEuNwgjOFHLZlFlrE6Bm2EpwtWOhEY6XxSnljWMIgS_JzZy7T_Ew-Tzajziloby0jCMIFELVRcVmVZtizskHu0_dZ5O-LYI9MrIzI1vw2BMjK4uJz6ZcxMO7T3_R_7h-ANccZ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310414475</pqid></control><display><type>article</type><title>Global existence of solutions to differential equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ramm, Alexander G.</creator><creatorcontrib>Ramm, Alexander G.</creatorcontrib><description>Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.</description><identifier>ISSN: 2254-3902</identifier><identifier>EISSN: 2281-7875</identifier><identifier>DOI: 10.1007/s40324-019-00199-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Eigenvalues ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear systems</subject><ispartof>SeMA journal, 2019-12, Vol.76 (4), p.625-628</ispartof><rights>Sociedad Española de Matemática Aplicada 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1856-e108639fc69d728681494327136a814889f0521c60d5d2fa4d31c6d77e9d210f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40324-019-00199-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40324-019-00199-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ramm, Alexander G.</creatorcontrib><title>Global existence of solutions to differential equations</title><title>SeMA journal</title><addtitle>SeMA</addtitle><description>Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.</description><subject>Applications of Mathematics</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><issn>2254-3902</issn><issn>2281-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19F7k0weSylahYIbXYfpJJGRcdImM6D_3rQjuHNzH9xzzoWPkGuEWwRQd1kAZ4ICGgqlGCrPyIIxjVRpVZ8f51pQboBdklXO3Q6Y0TUDhguiNn3cNX3lv7o8-qH1VQxVjv00dnHI1Rgr14Xgkx_G7ig7TM3pckUuQtNnv_rtS_L2-PC6fqLbl83z-n5LW9S1pB5BS25CK41TTEuNwgjOFHLZlFlrE6Bm2EpwtWOhEY6XxSnljWMIgS_JzZy7T_Ew-Tzajziloby0jCMIFELVRcVmVZtizskHu0_dZ5O-LYI9MrIzI1vw2BMjK4uJz6ZcxMO7T3_R_7h-ANccZ3Q</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ramm, Alexander G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Global existence of solutions to differential equations</title><author>Ramm, Alexander G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1856-e108639fc69d728681494327136a814889f0521c60d5d2fa4d31c6d77e9d210f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramm, Alexander G.</creatorcontrib><collection>CrossRef</collection><jtitle>SeMA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramm, Alexander G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global existence of solutions to differential equations</atitle><jtitle>SeMA journal</jtitle><stitle>SeMA</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>76</volume><issue>4</issue><spage>625</spage><epage>628</epage><pages>625-628</pages><issn>2254-3902</issn><eissn>2281-7875</eissn><abstract>Sufficient conditions are given for global existence of solutions to systems of nonlinear differential equations. The results are based on the author’s nonlinear inequality. The case when all the eigenvalues of the linearized operator are purely imaginary and distinct is considered.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40324-019-00199-6</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2254-3902
ispartof SeMA journal, 2019-12, Vol.76 (4), p.625-628
issn 2254-3902
2281-7875
language eng
recordid cdi_proquest_journals_2310414475
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Eigenvalues
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Nonlinear equations
Nonlinear systems
title Global existence of solutions to differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20existence%20of%20solutions%20to%20differential%20equations&rft.jtitle=SeMA%20journal&rft.au=Ramm,%20Alexander%20G.&rft.date=2019-12-01&rft.volume=76&rft.issue=4&rft.spage=625&rft.epage=628&rft.pages=625-628&rft.issn=2254-3902&rft.eissn=2281-7875&rft_id=info:doi/10.1007/s40324-019-00199-6&rft_dat=%3Cproquest_cross%3E2310414475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310414475&rft_id=info:pmid/&rfr_iscdi=true