On the ill-posedness of the 5th-order Gardner equation

We present ill-posedness results for the initial value problem of the 5th-order Gardner equation. We use new breather solutions discovered for this higher order Gardner equation to measure the regularity of the Cauchy problem in Sobolev spaces H s ( R ) . We find the sharp Sobolev index under which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2019-12, Vol.13 (2), p.383-390
Hauptverfasser: Alejo, Miguel A., Cardoso, Eleomar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 2
container_start_page 383
container_title São Paulo Journal of Mathematical Sciences
container_volume 13
creator Alejo, Miguel A.
Cardoso, Eleomar
description We present ill-posedness results for the initial value problem of the 5th-order Gardner equation. We use new breather solutions discovered for this higher order Gardner equation to measure the regularity of the Cauchy problem in Sobolev spaces H s ( R ) . We find the sharp Sobolev index under which the local well-posedness of the problem is lost, meaning that the dependence of 5th-order Gardner solutions upon initial data fails to be continuous.
doi_str_mv 10.1007/s40863-019-00150-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310413901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310413901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2b653775ed2c923f9fcd1b77633be16823dc57f39af9a00111d8cf30864a1fba3</originalsourceid><addsrcrecordid>eNp9UMFOwzAMjRBITGM_wKkS54Adt0lzRBMMpEm7wDlK24R1Gs2WdAf-nrAiccMXS_Z7z36PsVuEewRQD6mEWhIH1BwAK-Dqgs0EoeQaRH3JZqhrwaUGdc0WKe0gV1UqXcGMyc1QjFtX9Ps9P4TkusGlVAR_HlbjlofYuVisbMybWLjjyY59GG7Ylbf75Ba_fc7en5_eli98vVm9Lh_XvCVJIxeNrEipynWi1YK89m2HjVKSqHEoa0FdWylP2npt8--IXd16ynZKi76xNGd3k-4hhuPJpdHswikO-aTJBqFE0oAZJSZUG0NK0XlziP2njV8GwfxEZKaITI7InCMyKpNoIqUMHj5c_JP-h_UN6KtnHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310413901</pqid></control><display><type>article</type><title>On the ill-posedness of the 5th-order Gardner equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alejo, Miguel A. ; Cardoso, Eleomar</creator><creatorcontrib>Alejo, Miguel A. ; Cardoso, Eleomar</creatorcontrib><description>We present ill-posedness results for the initial value problem of the 5th-order Gardner equation. We use new breather solutions discovered for this higher order Gardner equation to measure the regularity of the Cauchy problem in Sobolev spaces H s ( R ) . We find the sharp Sobolev index under which the local well-posedness of the problem is lost, meaning that the dependence of 5th-order Gardner solutions upon initial data fails to be continuous.</description><identifier>ISSN: 1982-6907</identifier><identifier>EISSN: 2316-9028</identifier><identifier>EISSN: 2306-9028</identifier><identifier>DOI: 10.1007/s40863-019-00150-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Cauchy problems ; Dependence ; Mathematics ; Mathematics and Statistics ; Sobolev space ; Special Section: Nonlinear Dispersive Equations ; Well posed problems</subject><ispartof>São Paulo Journal of Mathematical Sciences, 2019-12, Vol.13 (2), p.383-390</ispartof><rights>Instituto de Matemática e Estatística da Universidade de São Paulo 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2b653775ed2c923f9fcd1b77633be16823dc57f39af9a00111d8cf30864a1fba3</citedby><cites>FETCH-LOGICAL-c363t-2b653775ed2c923f9fcd1b77633be16823dc57f39af9a00111d8cf30864a1fba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40863-019-00150-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40863-019-00150-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Alejo, Miguel A.</creatorcontrib><creatorcontrib>Cardoso, Eleomar</creatorcontrib><title>On the ill-posedness of the 5th-order Gardner equation</title><title>São Paulo Journal of Mathematical Sciences</title><addtitle>São Paulo J. Math. Sci</addtitle><description>We present ill-posedness results for the initial value problem of the 5th-order Gardner equation. We use new breather solutions discovered for this higher order Gardner equation to measure the regularity of the Cauchy problem in Sobolev spaces H s ( R ) . We find the sharp Sobolev index under which the local well-posedness of the problem is lost, meaning that the dependence of 5th-order Gardner solutions upon initial data fails to be continuous.</description><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Dependence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sobolev space</subject><subject>Special Section: Nonlinear Dispersive Equations</subject><subject>Well posed problems</subject><issn>1982-6907</issn><issn>2316-9028</issn><issn>2306-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOwzAMjRBITGM_wKkS54Adt0lzRBMMpEm7wDlK24R1Gs2WdAf-nrAiccMXS_Z7z36PsVuEewRQD6mEWhIH1BwAK-Dqgs0EoeQaRH3JZqhrwaUGdc0WKe0gV1UqXcGMyc1QjFtX9Ps9P4TkusGlVAR_HlbjlofYuVisbMybWLjjyY59GG7Ylbf75Ba_fc7en5_eli98vVm9Lh_XvCVJIxeNrEipynWi1YK89m2HjVKSqHEoa0FdWylP2npt8--IXd16ynZKi76xNGd3k-4hhuPJpdHswikO-aTJBqFE0oAZJSZUG0NK0XlziP2njV8GwfxEZKaITI7InCMyKpNoIqUMHj5c_JP-h_UN6KtnHg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Alejo, Miguel A.</creator><creator>Cardoso, Eleomar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>On the ill-posedness of the 5th-order Gardner equation</title><author>Alejo, Miguel A. ; Cardoso, Eleomar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2b653775ed2c923f9fcd1b77633be16823dc57f39af9a00111d8cf30864a1fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Dependence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sobolev space</topic><topic>Special Section: Nonlinear Dispersive Equations</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alejo, Miguel A.</creatorcontrib><creatorcontrib>Cardoso, Eleomar</creatorcontrib><collection>CrossRef</collection><jtitle>São Paulo Journal of Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alejo, Miguel A.</au><au>Cardoso, Eleomar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the ill-posedness of the 5th-order Gardner equation</atitle><jtitle>São Paulo Journal of Mathematical Sciences</jtitle><stitle>São Paulo J. Math. Sci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>383</spage><epage>390</epage><pages>383-390</pages><issn>1982-6907</issn><eissn>2316-9028</eissn><eissn>2306-9028</eissn><abstract>We present ill-posedness results for the initial value problem of the 5th-order Gardner equation. We use new breather solutions discovered for this higher order Gardner equation to measure the regularity of the Cauchy problem in Sobolev spaces H s ( R ) . We find the sharp Sobolev index under which the local well-posedness of the problem is lost, meaning that the dependence of 5th-order Gardner solutions upon initial data fails to be continuous.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40863-019-00150-7</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1982-6907
ispartof São Paulo Journal of Mathematical Sciences, 2019-12, Vol.13 (2), p.383-390
issn 1982-6907
2316-9028
2306-9028
language eng
recordid cdi_proquest_journals_2310413901
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Cauchy problems
Dependence
Mathematics
Mathematics and Statistics
Sobolev space
Special Section: Nonlinear Dispersive Equations
Well posed problems
title On the ill-posedness of the 5th-order Gardner equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20ill-posedness%20of%20the%205th-order%20Gardner%20equation&rft.jtitle=S%C3%A3o%20Paulo%20Journal%20of%20Mathematical%20Sciences&rft.au=Alejo,%20Miguel%20A.&rft.date=2019-12-01&rft.volume=13&rft.issue=2&rft.spage=383&rft.epage=390&rft.pages=383-390&rft.issn=1982-6907&rft.eissn=2316-9028&rft_id=info:doi/10.1007/s40863-019-00150-7&rft_dat=%3Cproquest_cross%3E2310413901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310413901&rft_id=info:pmid/&rfr_iscdi=true