Bayesian analysis of critical fatigue failure sources

•The inclusion size distribution from fatigue testing is filtered by fatigue process.•Observation of an inclusion limits the possible sizes of other failure sources.•The presented model has enhanced fatigue size effect prediction capabilities. A novel approach for inferring the underlying non-metall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2020-01, Vol.130, p.105282, Article 105282
Hauptverfasser: Vaara, Joona, Väntänen, Miikka, Kämäräinen, Panu, Kemppainen, Jukka, Frondelius, Tero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105282
container_title International journal of fatigue
container_volume 130
creator Vaara, Joona
Väntänen, Miikka
Kämäräinen, Panu
Kemppainen, Jukka
Frondelius, Tero
description •The inclusion size distribution from fatigue testing is filtered by fatigue process.•Observation of an inclusion limits the possible sizes of other failure sources.•The presented model has enhanced fatigue size effect prediction capabilities. A novel approach for inferring the underlying non-metallic inclusion distribution from fatigue test fractography is presented. It is shown that the non-metallic inclusion size distribution obtained from fatigue testing differs from the extreme value distributions, which do not take fatigue into account. Fatigue, as a process, acts as a filter for the observed inclusions, and by taking advantage of this allows us to extract more refined information from the fractography using statistical inference. The emphasis in this paper is on analysis of axial fatigue testing of smooth specimens. The concepts presented here apply to all fatigue testing where the data from fracture surfaces is collected.
doi_str_mv 10.1016/j.ijfatigue.2019.105282
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310281016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014211231930386X</els_id><sourcerecordid>2310281016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b44fe7615af5dcc645fb4aa6228975593f7cdde42e06d54c5951671568e80c383</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKu_wQHXU_N-LGvxBQU3ug5p5kYyjJ2azAjz702Z4tbVgcs5h3M_hG4JXhFM5H27im1wQ_wcYUUxMeUqqKZnaEG0MjXjgp6jBSac1oRQdomucm4xxgYrsUDiwU2Qo9tXbu-6Kcdc9aHyKQ7Ru646FReN3Zigyv2YPORrdBFcl-HmpEv08fT4vnmpt2_Pr5v1tvbM0KHecR5ASSJcEI33kouw485JSrVRQhgWlG8a4BSwbAT3wggiFRFSg8aeabZEd3PvIfXfI-TBtmVAGZotZQRTfSRQXGp2-dTnnCDYQ4pfLk2WYHt02Nb-MbJHRnZmVJLrOQnliZ8IyWYfYe-hiQn8YJs-_tvxC2NWcuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310281016</pqid></control><display><type>article</type><title>Bayesian analysis of critical fatigue failure sources</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vaara, Joona ; Väntänen, Miikka ; Kämäräinen, Panu ; Kemppainen, Jukka ; Frondelius, Tero</creator><creatorcontrib>Vaara, Joona ; Väntänen, Miikka ; Kämäräinen, Panu ; Kemppainen, Jukka ; Frondelius, Tero</creatorcontrib><description>•The inclusion size distribution from fatigue testing is filtered by fatigue process.•Observation of an inclusion limits the possible sizes of other failure sources.•The presented model has enhanced fatigue size effect prediction capabilities. A novel approach for inferring the underlying non-metallic inclusion distribution from fatigue test fractography is presented. It is shown that the non-metallic inclusion size distribution obtained from fatigue testing differs from the extreme value distributions, which do not take fatigue into account. Fatigue, as a process, acts as a filter for the observed inclusions, and by taking advantage of this allows us to extract more refined information from the fractography using statistical inference. The emphasis in this paper is on analysis of axial fatigue testing of smooth specimens. The concepts presented here apply to all fatigue testing where the data from fracture surfaces is collected.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2019.105282</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian inference ; Extreme values ; Failure analysis ; Fatigue failure ; Fatigue size effect ; Fatigue tests ; Fractography ; Fracture surfaces ; Inclusion size distribution ; Materials fatigue ; Nonmetallic inclusions ; Size distribution ; Statistical inference</subject><ispartof>International journal of fatigue, 2020-01, Vol.130, p.105282, Article 105282</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b44fe7615af5dcc645fb4aa6228975593f7cdde42e06d54c5951671568e80c383</citedby><cites>FETCH-LOGICAL-c392t-b44fe7615af5dcc645fb4aa6228975593f7cdde42e06d54c5951671568e80c383</cites><orcidid>0000-0002-8015-5998 ; 0000-0003-2288-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2019.105282$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Vaara, Joona</creatorcontrib><creatorcontrib>Väntänen, Miikka</creatorcontrib><creatorcontrib>Kämäräinen, Panu</creatorcontrib><creatorcontrib>Kemppainen, Jukka</creatorcontrib><creatorcontrib>Frondelius, Tero</creatorcontrib><title>Bayesian analysis of critical fatigue failure sources</title><title>International journal of fatigue</title><description>•The inclusion size distribution from fatigue testing is filtered by fatigue process.•Observation of an inclusion limits the possible sizes of other failure sources.•The presented model has enhanced fatigue size effect prediction capabilities. A novel approach for inferring the underlying non-metallic inclusion distribution from fatigue test fractography is presented. It is shown that the non-metallic inclusion size distribution obtained from fatigue testing differs from the extreme value distributions, which do not take fatigue into account. Fatigue, as a process, acts as a filter for the observed inclusions, and by taking advantage of this allows us to extract more refined information from the fractography using statistical inference. The emphasis in this paper is on analysis of axial fatigue testing of smooth specimens. The concepts presented here apply to all fatigue testing where the data from fracture surfaces is collected.</description><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Extreme values</subject><subject>Failure analysis</subject><subject>Fatigue failure</subject><subject>Fatigue size effect</subject><subject>Fatigue tests</subject><subject>Fractography</subject><subject>Fracture surfaces</subject><subject>Inclusion size distribution</subject><subject>Materials fatigue</subject><subject>Nonmetallic inclusions</subject><subject>Size distribution</subject><subject>Statistical inference</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKu_wQHXU_N-LGvxBQU3ug5p5kYyjJ2azAjz702Z4tbVgcs5h3M_hG4JXhFM5H27im1wQ_wcYUUxMeUqqKZnaEG0MjXjgp6jBSac1oRQdomucm4xxgYrsUDiwU2Qo9tXbu-6Kcdc9aHyKQ7Ru646FReN3Zigyv2YPORrdBFcl-HmpEv08fT4vnmpt2_Pr5v1tvbM0KHecR5ASSJcEI33kouw485JSrVRQhgWlG8a4BSwbAT3wggiFRFSg8aeabZEd3PvIfXfI-TBtmVAGZotZQRTfSRQXGp2-dTnnCDYQ4pfLk2WYHt02Nb-MbJHRnZmVJLrOQnliZ8IyWYfYe-hiQn8YJs-_tvxC2NWcuo</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Vaara, Joona</creator><creator>Väntänen, Miikka</creator><creator>Kämäräinen, Panu</creator><creator>Kemppainen, Jukka</creator><creator>Frondelius, Tero</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8015-5998</orcidid><orcidid>https://orcid.org/0000-0003-2288-0902</orcidid></search><sort><creationdate>202001</creationdate><title>Bayesian analysis of critical fatigue failure sources</title><author>Vaara, Joona ; Väntänen, Miikka ; Kämäräinen, Panu ; Kemppainen, Jukka ; Frondelius, Tero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b44fe7615af5dcc645fb4aa6228975593f7cdde42e06d54c5951671568e80c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Extreme values</topic><topic>Failure analysis</topic><topic>Fatigue failure</topic><topic>Fatigue size effect</topic><topic>Fatigue tests</topic><topic>Fractography</topic><topic>Fracture surfaces</topic><topic>Inclusion size distribution</topic><topic>Materials fatigue</topic><topic>Nonmetallic inclusions</topic><topic>Size distribution</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaara, Joona</creatorcontrib><creatorcontrib>Väntänen, Miikka</creatorcontrib><creatorcontrib>Kämäräinen, Panu</creatorcontrib><creatorcontrib>Kemppainen, Jukka</creatorcontrib><creatorcontrib>Frondelius, Tero</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaara, Joona</au><au>Väntänen, Miikka</au><au>Kämäräinen, Panu</au><au>Kemppainen, Jukka</au><au>Frondelius, Tero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of critical fatigue failure sources</atitle><jtitle>International journal of fatigue</jtitle><date>2020-01</date><risdate>2020</risdate><volume>130</volume><spage>105282</spage><pages>105282-</pages><artnum>105282</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The inclusion size distribution from fatigue testing is filtered by fatigue process.•Observation of an inclusion limits the possible sizes of other failure sources.•The presented model has enhanced fatigue size effect prediction capabilities. A novel approach for inferring the underlying non-metallic inclusion distribution from fatigue test fractography is presented. It is shown that the non-metallic inclusion size distribution obtained from fatigue testing differs from the extreme value distributions, which do not take fatigue into account. Fatigue, as a process, acts as a filter for the observed inclusions, and by taking advantage of this allows us to extract more refined information from the fractography using statistical inference. The emphasis in this paper is on analysis of axial fatigue testing of smooth specimens. The concepts presented here apply to all fatigue testing where the data from fracture surfaces is collected.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2019.105282</doi><orcidid>https://orcid.org/0000-0002-8015-5998</orcidid><orcidid>https://orcid.org/0000-0003-2288-0902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2020-01, Vol.130, p.105282, Article 105282
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2310281016
source ScienceDirect Journals (5 years ago - present)
subjects Bayesian analysis
Bayesian inference
Extreme values
Failure analysis
Fatigue failure
Fatigue size effect
Fatigue tests
Fractography
Fracture surfaces
Inclusion size distribution
Materials fatigue
Nonmetallic inclusions
Size distribution
Statistical inference
title Bayesian analysis of critical fatigue failure sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20critical%20fatigue%20failure%20sources&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Vaara,%20Joona&rft.date=2020-01&rft.volume=130&rft.spage=105282&rft.pages=105282-&rft.artnum=105282&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2019.105282&rft_dat=%3Cproquest_cross%3E2310281016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310281016&rft_id=info:pmid/&rft_els_id=S014211231930386X&rfr_iscdi=true