The Mueller matrix cone and its application to filtering

We show that there is an isometry between the real ambient space of all Mueller matrices and the space of all Hermitian matrices which maps the Mueller matrices onto the positive semidefinite matrices. We use this to establish an optimality result for the filtering of Mueller matrices, which roughly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
Hauptverfasser: Zander, Tim, Beyerer, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zander, Tim
Beyerer, Jürgen
description We show that there is an isometry between the real ambient space of all Mueller matrices and the space of all Hermitian matrices which maps the Mueller matrices onto the positive semidefinite matrices. We use this to establish an optimality result for the filtering of Mueller matrices, which roughly says that it is always enough to filter the eigenvalues of the corresponding "coherency matrix". Then we further explain how the knowledge of the cone of Hermitian positive semidefinite matrices can be transferred to the cone of Mueller matrices with a special emphasis towards optimisation. In particular, we suggest that means of Mueller matrices should be computed within the corresponding Riemannian geometry.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2310136369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310136369</sourcerecordid><originalsourceid>FETCH-proquest_journals_23101363693</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLiS5NtZZFBe37iXUW02JScwP-Pg6-ABOZ_jOglUSUTTdTsoVq1OaOedS7WXbYsW6_kFwLWQtRXjqHM0bRu8ItLuByQl0CNaMOhvvIHuYjM0Ujbtv2HLSNlH965ptz6f-eGlC9K9CKQ-zL9F9aZAouECF6oD_XR8wVjXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310136369</pqid></control><display><type>article</type><title>The Mueller matrix cone and its application to filtering</title><source>Free E- Journals</source><creator>Zander, Tim ; Beyerer, Jürgen</creator><creatorcontrib>Zander, Tim ; Beyerer, Jürgen</creatorcontrib><description>We show that there is an isometry between the real ambient space of all Mueller matrices and the space of all Hermitian matrices which maps the Mueller matrices onto the positive semidefinite matrices. We use this to establish an optimality result for the filtering of Mueller matrices, which roughly says that it is always enough to filter the eigenvalues of the corresponding "coherency matrix". Then we further explain how the knowledge of the cone of Hermitian positive semidefinite matrices can be transferred to the cone of Mueller matrices with a special emphasis towards optimisation. In particular, we suggest that means of Mueller matrices should be computed within the corresponding Riemannian geometry.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Correlation analysis ; Eigenvalues ; Filtration ; Mathematical analysis ; Matrix methods</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Zander, Tim</creatorcontrib><creatorcontrib>Beyerer, Jürgen</creatorcontrib><title>The Mueller matrix cone and its application to filtering</title><title>arXiv.org</title><description>We show that there is an isometry between the real ambient space of all Mueller matrices and the space of all Hermitian matrices which maps the Mueller matrices onto the positive semidefinite matrices. We use this to establish an optimality result for the filtering of Mueller matrices, which roughly says that it is always enough to filter the eigenvalues of the corresponding "coherency matrix". Then we further explain how the knowledge of the cone of Hermitian positive semidefinite matrices can be transferred to the cone of Mueller matrices with a special emphasis towards optimisation. In particular, we suggest that means of Mueller matrices should be computed within the corresponding Riemannian geometry.</description><subject>Correlation analysis</subject><subject>Eigenvalues</subject><subject>Filtration</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLiS5NtZZFBe37iXUW02JScwP-Pg6-ABOZ_jOglUSUTTdTsoVq1OaOedS7WXbYsW6_kFwLWQtRXjqHM0bRu8ItLuByQl0CNaMOhvvIHuYjM0Ujbtv2HLSNlH965ptz6f-eGlC9K9CKQ-zL9F9aZAouECF6oD_XR8wVjXw</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Zander, Tim</creator><creator>Beyerer, Jürgen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191113</creationdate><title>The Mueller matrix cone and its application to filtering</title><author>Zander, Tim ; Beyerer, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23101363693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation analysis</topic><topic>Eigenvalues</topic><topic>Filtration</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Zander, Tim</creatorcontrib><creatorcontrib>Beyerer, Jürgen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zander, Tim</au><au>Beyerer, Jürgen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Mueller matrix cone and its application to filtering</atitle><jtitle>arXiv.org</jtitle><date>2019-11-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We show that there is an isometry between the real ambient space of all Mueller matrices and the space of all Hermitian matrices which maps the Mueller matrices onto the positive semidefinite matrices. We use this to establish an optimality result for the filtering of Mueller matrices, which roughly says that it is always enough to filter the eigenvalues of the corresponding "coherency matrix". Then we further explain how the knowledge of the cone of Hermitian positive semidefinite matrices can be transferred to the cone of Mueller matrices with a special emphasis towards optimisation. In particular, we suggest that means of Mueller matrices should be computed within the corresponding Riemannian geometry.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2310136369
source Free E- Journals
subjects Correlation analysis
Eigenvalues
Filtration
Mathematical analysis
Matrix methods
title The Mueller matrix cone and its application to filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Mueller%20matrix%20cone%20and%20its%20application%20to%20filtering&rft.jtitle=arXiv.org&rft.au=Zander,%20Tim&rft.date=2019-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2310136369%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310136369&rft_id=info:pmid/&rfr_iscdi=true