Weak Solutions to the Complex m-Hessian Equation on Open Subsets of C n

In this paper, we prove the existence of weak solutions to the complex m-Hessian equations in the class Dm(Ω) on an open subset Ω of Cn. In the end of the paper we give an example shows that in the unit ball B2(0,1)⊂C2 the complex Monge-Ampère equation (ddc.)2=μ is solvable but the complex Hessian e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-11, Vol.13 (8), p.4007-4025
Hauptverfasser: Le Mau Hai, Vu Van Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the existence of weak solutions to the complex m-Hessian equations in the class Dm(Ω) on an open subset Ω of Cn. In the end of the paper we give an example shows that in the unit ball B2(0,1)⊂C2 the complex Monge-Ampère equation (ddc.)2=μ is solvable but the complex Hessian equation H1(.)=μ has not any weak solutions where μ is a nonnegative Radon measure on B2(0,1).
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-019-00948-5