Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity

Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-11, Vol.29 (44), p.n/a
Hauptverfasser: Liu, Liu‐Xin, Chen, Wei, Zhang, Hao‐Bin, Wang, Qi‐Wei, Guan, Fanglan, Yu, Zhong‐Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Advanced functional materials
container_volume 29
creator Liu, Liu‐Xin
Chen, Wei
Zhang, Hao‐Bin
Wang, Qi‐Wei
Guan, Fanglan
Yu, Zhong‐Zhen
description Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of >140°.
doi_str_mv 10.1002/adfm.201905197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2309657905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309657905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3</originalsourceid><addsrcrecordid>eNqFkUFu2zAQRYWgBZqm2XZNoNvaISVLlJZpEtcB7HbhBMhOoMhhPAlFuiQVx7seoSfrIXqS0naQLrvigHj_z-D_LPvI6JhRmp8JpftxTllDS9bwo-yYVawaFTSv37zO7O5d9j6EB0oZ58XkOPs9NfCMnQEirCKLwUTUg5URnRWGLNE8kht4jmggkA3GFfmCrsceIkoyB6H__Pw1x0cgizuwcJb4J_Dkm7Bugx72Q4h-kHHwyUA7T64MyOhdL-7t3uTaRvAaPFgJZLlCMArt_WcyG3pUGLdk4SxG5_efuxuXYHZbL8HjEygy2yrv1ivXoUz0h-ytFibA6ct7kt1Or24uZqP596_XF-fzkSzKio_0pBCNzlNUSgsoWT6RdalASto1VaUmtGOS8q7oQAlZdrqktKYNy0vO65pLWZxknw6-a-9-DBBi--AGnyILbV7Qpip5aiFR4wMlvQvBg27XHnvhty2j7a6zdtdZ-9pZEjQHwSYFvv0P3Z5fThf_tH8B63Si-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309657905</pqid></control><display><type>article</type><title>Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity</title><source>Wiley Online Library</source><creator>Liu, Liu‐Xin ; Chen, Wei ; Zhang, Hao‐Bin ; Wang, Qi‐Wei ; Guan, Fanglan ; Yu, Zhong‐Zhen</creator><creatorcontrib>Liu, Liu‐Xin ; Chen, Wei ; Zhang, Hao‐Bin ; Wang, Qi‐Wei ; Guan, Fanglan ; Yu, Zhong‐Zhen</creatorcontrib><description>Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of &gt;140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of &gt;140°.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201905197</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Biomimetics ; Carbon nitride ; Contact angle ; Electric contacts ; electromagnetic interference shielding ; Electromagnetic shielding ; Functional groups ; Garments ; Humidity ; humidity sensitivity ; Hydrophobicity ; Materials science ; multifunctional textiles ; MXene sheets ; MXenes ; Nanostructure ; Nanowires ; Oxidation ; Porosity ; Portable equipment ; Silk ; Silver ; Substrates ; superhydrophobicity ; Textiles ; Transition metals ; Wearable technology</subject><ispartof>Advanced functional materials, 2019-11, Vol.29 (44), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3</citedby><cites>FETCH-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3</cites><orcidid>0000-0001-8357-3362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201905197$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201905197$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Liu‐Xin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Hao‐Bin</creatorcontrib><creatorcontrib>Wang, Qi‐Wei</creatorcontrib><creatorcontrib>Guan, Fanglan</creatorcontrib><creatorcontrib>Yu, Zhong‐Zhen</creatorcontrib><title>Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity</title><title>Advanced functional materials</title><description>Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of &gt;140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of &gt;140°.</description><subject>Actuators</subject><subject>Biomimetics</subject><subject>Carbon nitride</subject><subject>Contact angle</subject><subject>Electric contacts</subject><subject>electromagnetic interference shielding</subject><subject>Electromagnetic shielding</subject><subject>Functional groups</subject><subject>Garments</subject><subject>Humidity</subject><subject>humidity sensitivity</subject><subject>Hydrophobicity</subject><subject>Materials science</subject><subject>multifunctional textiles</subject><subject>MXene sheets</subject><subject>MXenes</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Porosity</subject><subject>Portable equipment</subject><subject>Silk</subject><subject>Silver</subject><subject>Substrates</subject><subject>superhydrophobicity</subject><subject>Textiles</subject><subject>Transition metals</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFu2zAQRYWgBZqm2XZNoNvaISVLlJZpEtcB7HbhBMhOoMhhPAlFuiQVx7seoSfrIXqS0naQLrvigHj_z-D_LPvI6JhRmp8JpftxTllDS9bwo-yYVawaFTSv37zO7O5d9j6EB0oZ58XkOPs9NfCMnQEirCKLwUTUg5URnRWGLNE8kht4jmggkA3GFfmCrsceIkoyB6H__Pw1x0cgizuwcJb4J_Dkm7Bugx72Q4h-kHHwyUA7T64MyOhdL-7t3uTaRvAaPFgJZLlCMArt_WcyG3pUGLdk4SxG5_efuxuXYHZbL8HjEygy2yrv1ivXoUz0h-ytFibA6ct7kt1Or24uZqP596_XF-fzkSzKio_0pBCNzlNUSgsoWT6RdalASto1VaUmtGOS8q7oQAlZdrqktKYNy0vO65pLWZxknw6-a-9-DBBi--AGnyILbV7Qpip5aiFR4wMlvQvBg27XHnvhty2j7a6zdtdZ-9pZEjQHwSYFvv0P3Z5fThf_tH8B63Si-A</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Liu, Liu‐Xin</creator><creator>Chen, Wei</creator><creator>Zhang, Hao‐Bin</creator><creator>Wang, Qi‐Wei</creator><creator>Guan, Fanglan</creator><creator>Yu, Zhong‐Zhen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8357-3362</orcidid></search><sort><creationdate>20191101</creationdate><title>Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity</title><author>Liu, Liu‐Xin ; Chen, Wei ; Zhang, Hao‐Bin ; Wang, Qi‐Wei ; Guan, Fanglan ; Yu, Zhong‐Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Biomimetics</topic><topic>Carbon nitride</topic><topic>Contact angle</topic><topic>Electric contacts</topic><topic>electromagnetic interference shielding</topic><topic>Electromagnetic shielding</topic><topic>Functional groups</topic><topic>Garments</topic><topic>Humidity</topic><topic>humidity sensitivity</topic><topic>Hydrophobicity</topic><topic>Materials science</topic><topic>multifunctional textiles</topic><topic>MXene sheets</topic><topic>MXenes</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Porosity</topic><topic>Portable equipment</topic><topic>Silk</topic><topic>Silver</topic><topic>Substrates</topic><topic>superhydrophobicity</topic><topic>Textiles</topic><topic>Transition metals</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liu‐Xin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Hao‐Bin</creatorcontrib><creatorcontrib>Wang, Qi‐Wei</creatorcontrib><creatorcontrib>Guan, Fanglan</creatorcontrib><creatorcontrib>Yu, Zhong‐Zhen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liu‐Xin</au><au>Chen, Wei</au><au>Zhang, Hao‐Bin</au><au>Wang, Qi‐Wei</au><au>Guan, Fanglan</au><au>Yu, Zhong‐Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity</atitle><jtitle>Advanced functional materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>44</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of &gt;140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of &gt;140°.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201905197</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8357-3362</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-11, Vol.29 (44), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2309657905
source Wiley Online Library
subjects Actuators
Biomimetics
Carbon nitride
Contact angle
Electric contacts
electromagnetic interference shielding
Electromagnetic shielding
Functional groups
Garments
Humidity
humidity sensitivity
Hydrophobicity
Materials science
multifunctional textiles
MXene sheets
MXenes
Nanostructure
Nanowires
Oxidation
Porosity
Portable equipment
Silk
Silver
Substrates
superhydrophobicity
Textiles
Transition metals
Wearable technology
title Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20and%20Multifunctional%20Silk%20Textiles%20with%20Biomimetic%20Leaf%E2%80%90Like%20MXene/Silver%20Nanowire%20Nanostructures%20for%20Electromagnetic%20Interference%20Shielding,%20Humidity%20Monitoring,%20and%20Self%E2%80%90Derived%20Hydrophobicity&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Liu%E2%80%90Xin&rft.date=2019-11-01&rft.volume=29&rft.issue=44&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201905197&rft_dat=%3Cproquest_cross%3E2309657905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309657905&rft_id=info:pmid/&rfr_iscdi=true