Experimental quantum network coding
Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be c...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2019-10, Vol.5 (1), p.1-5, Article 89 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | npj quantum information |
container_volume | 5 |
creator | Lu, He Li, Zheng-Da Yin, Xu-Fei Zhang, Rui Fang, Xiao-Xu Li, Li Liu, Nai-Le Xu, Feihu Chen, Yu-Ao Pan, Jian-Wei |
description | Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement. |
doi_str_mv | 10.1038/s41534-019-0207-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2309510632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309510632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLeFnqPJzCa7OUqpWih40XNIk2xpbbPbZBf135uygl48zRy-92beI-SWszvOsL5PJRdYUsYVZcAqChdkAkxIKrGuLv_s12SW0p6xTEINJZ-Q-fKz83F39KE3h-I0mNAPxyL4_qON74Vt3S5sb8hVYw7Jz37mlLw9Ll8Xz3T98rRaPKypLUH01HHnpVHcCuk2hktEbtAqb8EJ65xRBn2FQpa1slJipSoQ2IgGYNMYIxVOyXz07WJ7Gnzq9b4dYsgnNSBTgjOJkCk-Uja2KUXf6C7_b-KX5kyf69BjHTqH1Oc69FkDoyZlNmx9_HX-X_QNagVg_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309510632</pqid></control><display><type>article</type><title>Experimental quantum network coding</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Lu, He ; Li, Zheng-Da ; Yin, Xu-Fei ; Zhang, Rui ; Fang, Xiao-Xu ; Li, Li ; Liu, Nai-Le ; Xu, Feihu ; Chen, Yu-Ao ; Pan, Jian-Wei</creator><creatorcontrib>Lu, He ; Li, Zheng-Da ; Yin, Xu-Fei ; Zhang, Rui ; Fang, Xiao-Xu ; Li, Li ; Liu, Nai-Le ; Xu, Feihu ; Chen, Yu-Ao ; Pan, Jian-Wei</creatorcontrib><description>Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-019-0207-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/482 ; 639/766/483/2802 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Information processing ; Photons ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2019-10, Vol.5 (1), p.1-5, Article 89</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</citedby><cites>FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</cites><orcidid>0000-0002-1643-225X ; 0000-0001-5687-5576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-019-0207-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-019-0207-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,42170,51557</link.rule.ids></links><search><creatorcontrib>Lu, He</creatorcontrib><creatorcontrib>Li, Zheng-Da</creatorcontrib><creatorcontrib>Yin, Xu-Fei</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Fang, Xiao-Xu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Liu, Nai-Le</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><creatorcontrib>Chen, Yu-Ao</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Experimental quantum network coding</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.</description><subject>639/624/400/482</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Information processing</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWGp_gLeFnqPJzCa7OUqpWih40XNIk2xpbbPbZBf135uygl48zRy-92beI-SWszvOsL5PJRdYUsYVZcAqChdkAkxIKrGuLv_s12SW0p6xTEINJZ-Q-fKz83F39KE3h-I0mNAPxyL4_qON74Vt3S5sb8hVYw7Jz37mlLw9Ll8Xz3T98rRaPKypLUH01HHnpVHcCuk2hktEbtAqb8EJ65xRBn2FQpa1slJipSoQ2IgGYNMYIxVOyXz07WJ7Gnzq9b4dYsgnNSBTgjOJkCk-Uja2KUXf6C7_b-KX5kyf69BjHTqH1Oc69FkDoyZlNmx9_HX-X_QNagVg_w</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Lu, He</creator><creator>Li, Zheng-Da</creator><creator>Yin, Xu-Fei</creator><creator>Zhang, Rui</creator><creator>Fang, Xiao-Xu</creator><creator>Li, Li</creator><creator>Liu, Nai-Le</creator><creator>Xu, Feihu</creator><creator>Chen, Yu-Ao</creator><creator>Pan, Jian-Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0001-5687-5576</orcidid></search><sort><creationdate>20191023</creationdate><title>Experimental quantum network coding</title><author>Lu, He ; Li, Zheng-Da ; Yin, Xu-Fei ; Zhang, Rui ; Fang, Xiao-Xu ; Li, Li ; Liu, Nai-Le ; Xu, Feihu ; Chen, Yu-Ao ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/400/482</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Information processing</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, He</creatorcontrib><creatorcontrib>Li, Zheng-Da</creatorcontrib><creatorcontrib>Yin, Xu-Fei</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Fang, Xiao-Xu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Liu, Nai-Le</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><creatorcontrib>Chen, Yu-Ao</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, He</au><au>Li, Zheng-Da</au><au>Yin, Xu-Fei</au><au>Zhang, Rui</au><au>Fang, Xiao-Xu</au><au>Li, Li</au><au>Liu, Nai-Le</au><au>Xu, Feihu</au><au>Chen, Yu-Ao</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental quantum network coding</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2019-10-23</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><artnum>89</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-019-0207-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0001-5687-5576</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2019-10, Vol.5 (1), p.1-5, Article 89 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_proquest_journals_2309510632 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | 639/624/400/482 639/766/483/2802 639/766/483/481 Classical and Quantum Gravitation Information processing Photons Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory |
title | Experimental quantum network coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20quantum%20network%20coding&rft.jtitle=npj%20quantum%20information&rft.au=Lu,%20He&rft.date=2019-10-23&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.artnum=89&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-019-0207-2&rft_dat=%3Cproquest_cross%3E2309510632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309510632&rft_id=info:pmid/&rfr_iscdi=true |