Experimental quantum network coding

Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2019-10, Vol.5 (1), p.1-5, Article 89
Hauptverfasser: Lu, He, Li, Zheng-Da, Yin, Xu-Fei, Zhang, Rui, Fang, Xiao-Xu, Li, Li, Liu, Nai-Le, Xu, Feihu, Chen, Yu-Ao, Pan, Jian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 1
container_start_page 1
container_title npj quantum information
container_volume 5
creator Lu, He
Li, Zheng-Da
Yin, Xu-Fei
Zhang, Rui
Fang, Xiao-Xu
Li, Li
Liu, Nai-Le
Xu, Feihu
Chen, Yu-Ao
Pan, Jian-Wei
description Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.
doi_str_mv 10.1038/s41534-019-0207-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2309510632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309510632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLeFnqPJzCa7OUqpWih40XNIk2xpbbPbZBf135uygl48zRy-92beI-SWszvOsL5PJRdYUsYVZcAqChdkAkxIKrGuLv_s12SW0p6xTEINJZ-Q-fKz83F39KE3h-I0mNAPxyL4_qON74Vt3S5sb8hVYw7Jz37mlLw9Ll8Xz3T98rRaPKypLUH01HHnpVHcCuk2hktEbtAqb8EJ65xRBn2FQpa1slJipSoQ2IgGYNMYIxVOyXz07WJ7Gnzq9b4dYsgnNSBTgjOJkCk-Uja2KUXf6C7_b-KX5kyf69BjHTqH1Oc69FkDoyZlNmx9_HX-X_QNagVg_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309510632</pqid></control><display><type>article</type><title>Experimental quantum network coding</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Lu, He ; Li, Zheng-Da ; Yin, Xu-Fei ; Zhang, Rui ; Fang, Xiao-Xu ; Li, Li ; Liu, Nai-Le ; Xu, Feihu ; Chen, Yu-Ao ; Pan, Jian-Wei</creator><creatorcontrib>Lu, He ; Li, Zheng-Da ; Yin, Xu-Fei ; Zhang, Rui ; Fang, Xiao-Xu ; Li, Li ; Liu, Nai-Le ; Xu, Feihu ; Chen, Yu-Ao ; Pan, Jian-Wei</creatorcontrib><description>Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-019-0207-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/482 ; 639/766/483/2802 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Information processing ; Photons ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2019-10, Vol.5 (1), p.1-5, Article 89</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</citedby><cites>FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</cites><orcidid>0000-0002-1643-225X ; 0000-0001-5687-5576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-019-0207-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-019-0207-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,42170,51557</link.rule.ids></links><search><creatorcontrib>Lu, He</creatorcontrib><creatorcontrib>Li, Zheng-Da</creatorcontrib><creatorcontrib>Yin, Xu-Fei</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Fang, Xiao-Xu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Liu, Nai-Le</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><creatorcontrib>Chen, Yu-Ao</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Experimental quantum network coding</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.</description><subject>639/624/400/482</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Information processing</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWGp_gLeFnqPJzCa7OUqpWih40XNIk2xpbbPbZBf135uygl48zRy-92beI-SWszvOsL5PJRdYUsYVZcAqChdkAkxIKrGuLv_s12SW0p6xTEINJZ-Q-fKz83F39KE3h-I0mNAPxyL4_qON74Vt3S5sb8hVYw7Jz37mlLw9Ll8Xz3T98rRaPKypLUH01HHnpVHcCuk2hktEbtAqb8EJ65xRBn2FQpa1slJipSoQ2IgGYNMYIxVOyXz07WJ7Gnzq9b4dYsgnNSBTgjOJkCk-Uja2KUXf6C7_b-KX5kyf69BjHTqH1Oc69FkDoyZlNmx9_HX-X_QNagVg_w</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Lu, He</creator><creator>Li, Zheng-Da</creator><creator>Yin, Xu-Fei</creator><creator>Zhang, Rui</creator><creator>Fang, Xiao-Xu</creator><creator>Li, Li</creator><creator>Liu, Nai-Le</creator><creator>Xu, Feihu</creator><creator>Chen, Yu-Ao</creator><creator>Pan, Jian-Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0001-5687-5576</orcidid></search><sort><creationdate>20191023</creationdate><title>Experimental quantum network coding</title><author>Lu, He ; Li, Zheng-Da ; Yin, Xu-Fei ; Zhang, Rui ; Fang, Xiao-Xu ; Li, Li ; Liu, Nai-Le ; Xu, Feihu ; Chen, Yu-Ao ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d1de6a91c56dba16331a3c9ec2d5cdda9a3e7356489c663797253f5f22bfaa693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/400/482</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Information processing</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, He</creatorcontrib><creatorcontrib>Li, Zheng-Da</creatorcontrib><creatorcontrib>Yin, Xu-Fei</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Fang, Xiao-Xu</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Liu, Nai-Le</creatorcontrib><creatorcontrib>Xu, Feihu</creatorcontrib><creatorcontrib>Chen, Yu-Ao</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, He</au><au>Li, Zheng-Da</au><au>Yin, Xu-Fei</au><au>Zhang, Rui</au><au>Fang, Xiao-Xu</au><au>Li, Li</au><au>Liu, Nai-Le</au><au>Xu, Feihu</au><au>Chen, Yu-Ao</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental quantum network coding</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2019-10-23</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><artnum>89</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-019-0207-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1643-225X</orcidid><orcidid>https://orcid.org/0000-0001-5687-5576</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2019-10, Vol.5 (1), p.1-5, Article 89
issn 2056-6387
2056-6387
language eng
recordid cdi_proquest_journals_2309510632
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects 639/624/400/482
639/766/483/2802
639/766/483/481
Classical and Quantum Gravitation
Information processing
Photons
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
title Experimental quantum network coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20quantum%20network%20coding&rft.jtitle=npj%20quantum%20information&rft.au=Lu,%20He&rft.date=2019-10-23&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.artnum=89&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-019-0207-2&rft_dat=%3Cproquest_cross%3E2309510632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309510632&rft_id=info:pmid/&rfr_iscdi=true