Vacancy‐ and doping‐dependent electronic and magnetic properties of monolayer SnS2

We have performed first‐principles calculations to investigate the formation and migration of vacancies and doping with M (M = Ti, V, Co, Mo, W, Re) at the Sn sites and X (X = O, Se, Te) at the S sites in monolayer SnS2. We find that the formation energies for S vacancy under both Sn‐ and S‐rich env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-01, Vol.103 (1), p.391-402
Hauptverfasser: Ullah, Hamid, Noor‐A‐Alam, Mohammad, Shin, Young‐Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 1
container_start_page 391
container_title Journal of the American Ceramic Society
container_volume 103
creator Ullah, Hamid
Noor‐A‐Alam, Mohammad
Shin, Young‐Han
description We have performed first‐principles calculations to investigate the formation and migration of vacancies and doping with M (M = Ti, V, Co, Mo, W, Re) at the Sn sites and X (X = O, Se, Te) at the S sites in monolayer SnS2. We find that the formation energies for S vacancy under both Sn‐ and S‐rich environments are lower than those for Sn vacancy, indicating that the vacancies at the S sites are likely to be formed during the synthesis. Reducing the possibility of vacancy cluster formation, both the vacancies at the Sn and S sites remain robust due to high migration barrier. Additionally, SnS2 with the vacancies at the Sn sites induces magnetic ground states with a magnetic moment of 4.00 μB. Both the Sn‐ and S‐sites vacancies preserve the semiconducting nature of pristine SnS2 with band gaps of 2.47 eV and 0.30 eV, respectively. Furthermore, we find that the dopants Ti, V, Mo, W, Re can be easily incorporated at the Sn sites in monolayer SnS2 due to the low formation energies under the S‐rich environment. However, Co may not be easily incorporated into SnS2. The doping with M at the Sn sites induces magnetic ground states in non‐magnetic SnS2. Additionally, a long‐range magnetic ordering is observed in SnS2 doped with V, Co, and Mo. In contrast, easy incorporation of O, Se, and Te at the S sites under the Sn‐rich environment has been observed while the semiconducting nature of SnS2 preserves with small band gaps.
doi_str_mv 10.1111/jace.16739
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2309364924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309364924</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2259-de1fe6d7c1c2896f11985110d9f076e4a2bcc8e84a1b49c8e81b7665a0f3dfab3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4QSRWKd4nMSJl1VV_lSJRaFby7HHVarUDk4qlB1H4IycBLcwm3mf9DTz9Ai5BTqDOPc7pXEGvMzEGZlAUUDKBPBzMqGUsrSsGL0kV32_iwiiyidks1FaOT3-fH0nypnE-K5x20gGO3QG3ZBgi3oI3jX65NirrcMhQhd8h2FosE-8Tfbe-VaNGJK1W7NrcmFV2-PN_56S94fl2-IpXb0-Pi_mq7RjrBCpQbDITalBs0pwCzFUAUCNsLTkmCtWa11hlSuoc3FUUJecF4razFhVZ1Ny93c3hvk4YD_InT8EF19KllGR8VywPLrgz_XZtDjKLjR7FUYJVB5Lk8fS5Kk0-TJfLE8q-wXCIGRV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309364924</pqid></control><display><type>article</type><title>Vacancy‐ and doping‐dependent electronic and magnetic properties of monolayer SnS2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ullah, Hamid ; Noor‐A‐Alam, Mohammad ; Shin, Young‐Han</creator><creatorcontrib>Ullah, Hamid ; Noor‐A‐Alam, Mohammad ; Shin, Young‐Han</creatorcontrib><description>We have performed first‐principles calculations to investigate the formation and migration of vacancies and doping with M (M = Ti, V, Co, Mo, W, Re) at the Sn sites and X (X = O, Se, Te) at the S sites in monolayer SnS2. We find that the formation energies for S vacancy under both Sn‐ and S‐rich environments are lower than those for Sn vacancy, indicating that the vacancies at the S sites are likely to be formed during the synthesis. Reducing the possibility of vacancy cluster formation, both the vacancies at the Sn and S sites remain robust due to high migration barrier. Additionally, SnS2 with the vacancies at the Sn sites induces magnetic ground states with a magnetic moment of 4.00 μB. Both the Sn‐ and S‐sites vacancies preserve the semiconducting nature of pristine SnS2 with band gaps of 2.47 eV and 0.30 eV, respectively. Furthermore, we find that the dopants Ti, V, Mo, W, Re can be easily incorporated at the Sn sites in monolayer SnS2 due to the low formation energies under the S‐rich environment. However, Co may not be easily incorporated into SnS2. The doping with M at the Sn sites induces magnetic ground states in non‐magnetic SnS2. Additionally, a long‐range magnetic ordering is observed in SnS2 doped with V, Co, and Mo. In contrast, easy incorporation of O, Se, and Te at the S sites under the Sn‐rich environment has been observed while the semiconducting nature of SnS2 preserves with small band gaps.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16739</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>band gap ; Doping ; Energy gap ; Energy of formation ; Free energy ; Ground state ; Heat of formation ; Magnetic moments ; Magnetic properties ; magnetism ; Molybdenum ; Monolayers ; Tellurium ; Tin disulfide ; Titanium ; Vacancies ; vacancy ; vacancy migration ; Vanadium</subject><ispartof>Journal of the American Ceramic Society, 2020-01, Vol.103 (1), p.391-402</ispartof><rights>2019 The American Ceramic Society</rights><rights>2019 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8537-1905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ullah, Hamid</creatorcontrib><creatorcontrib>Noor‐A‐Alam, Mohammad</creatorcontrib><creatorcontrib>Shin, Young‐Han</creatorcontrib><title>Vacancy‐ and doping‐dependent electronic and magnetic properties of monolayer SnS2</title><title>Journal of the American Ceramic Society</title><description>We have performed first‐principles calculations to investigate the formation and migration of vacancies and doping with M (M = Ti, V, Co, Mo, W, Re) at the Sn sites and X (X = O, Se, Te) at the S sites in monolayer SnS2. We find that the formation energies for S vacancy under both Sn‐ and S‐rich environments are lower than those for Sn vacancy, indicating that the vacancies at the S sites are likely to be formed during the synthesis. Reducing the possibility of vacancy cluster formation, both the vacancies at the Sn and S sites remain robust due to high migration barrier. Additionally, SnS2 with the vacancies at the Sn sites induces magnetic ground states with a magnetic moment of 4.00 μB. Both the Sn‐ and S‐sites vacancies preserve the semiconducting nature of pristine SnS2 with band gaps of 2.47 eV and 0.30 eV, respectively. Furthermore, we find that the dopants Ti, V, Mo, W, Re can be easily incorporated at the Sn sites in monolayer SnS2 due to the low formation energies under the S‐rich environment. However, Co may not be easily incorporated into SnS2. The doping with M at the Sn sites induces magnetic ground states in non‐magnetic SnS2. Additionally, a long‐range magnetic ordering is observed in SnS2 doped with V, Co, and Mo. In contrast, easy incorporation of O, Se, and Te at the S sites under the Sn‐rich environment has been observed while the semiconducting nature of SnS2 preserves with small band gaps.</description><subject>band gap</subject><subject>Doping</subject><subject>Energy gap</subject><subject>Energy of formation</subject><subject>Free energy</subject><subject>Ground state</subject><subject>Heat of formation</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>magnetism</subject><subject>Molybdenum</subject><subject>Monolayers</subject><subject>Tellurium</subject><subject>Tin disulfide</subject><subject>Titanium</subject><subject>Vacancies</subject><subject>vacancy</subject><subject>vacancy migration</subject><subject>Vanadium</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4QSRWKd4nMSJl1VV_lSJRaFby7HHVarUDk4qlB1H4IycBLcwm3mf9DTz9Ai5BTqDOPc7pXEGvMzEGZlAUUDKBPBzMqGUsrSsGL0kV32_iwiiyidks1FaOT3-fH0nypnE-K5x20gGO3QG3ZBgi3oI3jX65NirrcMhQhd8h2FosE-8Tfbe-VaNGJK1W7NrcmFV2-PN_56S94fl2-IpXb0-Pi_mq7RjrBCpQbDITalBs0pwCzFUAUCNsLTkmCtWa11hlSuoc3FUUJecF4razFhVZ1Ny93c3hvk4YD_InT8EF19KllGR8VywPLrgz_XZtDjKLjR7FUYJVB5Lk8fS5Kk0-TJfLE8q-wXCIGRV</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ullah, Hamid</creator><creator>Noor‐A‐Alam, Mohammad</creator><creator>Shin, Young‐Han</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8537-1905</orcidid></search><sort><creationdate>202001</creationdate><title>Vacancy‐ and doping‐dependent electronic and magnetic properties of monolayer SnS2</title><author>Ullah, Hamid ; Noor‐A‐Alam, Mohammad ; Shin, Young‐Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2259-de1fe6d7c1c2896f11985110d9f076e4a2bcc8e84a1b49c8e81b7665a0f3dfab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>band gap</topic><topic>Doping</topic><topic>Energy gap</topic><topic>Energy of formation</topic><topic>Free energy</topic><topic>Ground state</topic><topic>Heat of formation</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>magnetism</topic><topic>Molybdenum</topic><topic>Monolayers</topic><topic>Tellurium</topic><topic>Tin disulfide</topic><topic>Titanium</topic><topic>Vacancies</topic><topic>vacancy</topic><topic>vacancy migration</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Hamid</creatorcontrib><creatorcontrib>Noor‐A‐Alam, Mohammad</creatorcontrib><creatorcontrib>Shin, Young‐Han</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Hamid</au><au>Noor‐A‐Alam, Mohammad</au><au>Shin, Young‐Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacancy‐ and doping‐dependent electronic and magnetic properties of monolayer SnS2</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-01</date><risdate>2020</risdate><volume>103</volume><issue>1</issue><spage>391</spage><epage>402</epage><pages>391-402</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>We have performed first‐principles calculations to investigate the formation and migration of vacancies and doping with M (M = Ti, V, Co, Mo, W, Re) at the Sn sites and X (X = O, Se, Te) at the S sites in monolayer SnS2. We find that the formation energies for S vacancy under both Sn‐ and S‐rich environments are lower than those for Sn vacancy, indicating that the vacancies at the S sites are likely to be formed during the synthesis. Reducing the possibility of vacancy cluster formation, both the vacancies at the Sn and S sites remain robust due to high migration barrier. Additionally, SnS2 with the vacancies at the Sn sites induces magnetic ground states with a magnetic moment of 4.00 μB. Both the Sn‐ and S‐sites vacancies preserve the semiconducting nature of pristine SnS2 with band gaps of 2.47 eV and 0.30 eV, respectively. Furthermore, we find that the dopants Ti, V, Mo, W, Re can be easily incorporated at the Sn sites in monolayer SnS2 due to the low formation energies under the S‐rich environment. However, Co may not be easily incorporated into SnS2. The doping with M at the Sn sites induces magnetic ground states in non‐magnetic SnS2. Additionally, a long‐range magnetic ordering is observed in SnS2 doped with V, Co, and Mo. In contrast, easy incorporation of O, Se, and Te at the S sites under the Sn‐rich environment has been observed while the semiconducting nature of SnS2 preserves with small band gaps.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16739</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8537-1905</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-01, Vol.103 (1), p.391-402
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2309364924
source Wiley Online Library Journals Frontfile Complete
subjects band gap
Doping
Energy gap
Energy of formation
Free energy
Ground state
Heat of formation
Magnetic moments
Magnetic properties
magnetism
Molybdenum
Monolayers
Tellurium
Tin disulfide
Titanium
Vacancies
vacancy
vacancy migration
Vanadium
title Vacancy‐ and doping‐dependent electronic and magnetic properties of monolayer SnS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacancy%E2%80%90%20and%20doping%E2%80%90dependent%20electronic%20and%20magnetic%20properties%20of%20monolayer%20SnS2&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Ullah,%20Hamid&rft.date=2020-01&rft.volume=103&rft.issue=1&rft.spage=391&rft.epage=402&rft.pages=391-402&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16739&rft_dat=%3Cproquest_wiley%3E2309364924%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309364924&rft_id=info:pmid/&rfr_iscdi=true