On the predictability of domain‐independent temporal planners

Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its abil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2019-11, Vol.35 (4), p.745-773
Hauptverfasser: Cenamor, Isabel, Vallati, Mauro, Chrpa, Lukáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 773
container_issue 4
container_start_page 745
container_title Computational intelligence
container_volume 35
creator Cenamor, Isabel
Vallati, Mauro
Chrpa, Lukáš
description Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.
doi_str_mv 10.1111/coin.12211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2309238632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309238632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1t5kkK5HBS6HYTfchkwumTJMxmSLd-Qg-o0_i1HHtWZyz-c7_wwfANYILNM6djj4sEMYInYAZojUreU3hKZhBjmnJBKnOwUXOWwghIpTPwP06FMObLfpkjdeDan3nh0MRXWHiTvnw_fnlg7G9HVcYisHu-phUV_SdCsGmfAnOnOqyvfq7c7B5etw0L-Vq_bxsHlalJlSgkmiIGMMVFMbURrWGQoxpizGz3Fa1cQYJZh2DhAttGeVIOSjaWinNKsfIHNxMsX2K73ubB7mN-xTGRokJFJjwmuCRup0onWLOyTrZJ79T6SARlEc_8uhH_voZYTTBH76zh39I2ayXr9PPD8vKaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309238632</pqid></control><display><type>article</type><title>On the predictability of domain‐independent temporal planners</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Cenamor, Isabel ; Vallati, Mauro ; Chrpa, Lukáš</creator><creatorcontrib>Cenamor, Isabel ; Vallati, Mauro ; Chrpa, Lukáš</creatorcontrib><description>Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12211</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; automated planning ; Empirical analysis ; Performance prediction ; Planning ; predicting performance ; Regression analysis ; temporal planning</subject><ispartof>Computational intelligence, 2019-11, Vol.35 (4), p.745-773</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</citedby><cites>FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</cites><orcidid>0000-0002-8429-3570 ; 0000-0001-9713-7748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Cenamor, Isabel</creatorcontrib><creatorcontrib>Vallati, Mauro</creatorcontrib><creatorcontrib>Chrpa, Lukáš</creatorcontrib><title>On the predictability of domain‐independent temporal planners</title><title>Computational intelligence</title><description>Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.</description><subject>Algorithms</subject><subject>automated planning</subject><subject>Empirical analysis</subject><subject>Performance prediction</subject><subject>Planning</subject><subject>predicting performance</subject><subject>Regression analysis</subject><subject>temporal planning</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1t5kkK5HBS6HYTfchkwumTJMxmSLd-Qg-o0_i1HHtWZyz-c7_wwfANYILNM6djj4sEMYInYAZojUreU3hKZhBjmnJBKnOwUXOWwghIpTPwP06FMObLfpkjdeDan3nh0MRXWHiTvnw_fnlg7G9HVcYisHu-phUV_SdCsGmfAnOnOqyvfq7c7B5etw0L-Vq_bxsHlalJlSgkmiIGMMVFMbURrWGQoxpizGz3Fa1cQYJZh2DhAttGeVIOSjaWinNKsfIHNxMsX2K73ubB7mN-xTGRokJFJjwmuCRup0onWLOyTrZJ79T6SARlEc_8uhH_voZYTTBH76zh39I2ayXr9PPD8vKaKQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Cenamor, Isabel</creator><creator>Vallati, Mauro</creator><creator>Chrpa, Lukáš</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8429-3570</orcidid><orcidid>https://orcid.org/0000-0001-9713-7748</orcidid></search><sort><creationdate>201911</creationdate><title>On the predictability of domain‐independent temporal planners</title><author>Cenamor, Isabel ; Vallati, Mauro ; Chrpa, Lukáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>automated planning</topic><topic>Empirical analysis</topic><topic>Performance prediction</topic><topic>Planning</topic><topic>predicting performance</topic><topic>Regression analysis</topic><topic>temporal planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenamor, Isabel</creatorcontrib><creatorcontrib>Vallati, Mauro</creatorcontrib><creatorcontrib>Chrpa, Lukáš</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenamor, Isabel</au><au>Vallati, Mauro</au><au>Chrpa, Lukáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the predictability of domain‐independent temporal planners</atitle><jtitle>Computational intelligence</jtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>4</issue><spage>745</spage><epage>773</epage><pages>745-773</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances. This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem. Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12211</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8429-3570</orcidid><orcidid>https://orcid.org/0000-0001-9713-7748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2019-11, Vol.35 (4), p.745-773
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_2309238632
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Algorithms
automated planning
Empirical analysis
Performance prediction
Planning
predicting performance
Regression analysis
temporal planning
title On the predictability of domain‐independent temporal planners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20predictability%20of%20domain%E2%80%90independent%20temporal%20planners&rft.jtitle=Computational%20intelligence&rft.au=Cenamor,%20Isabel&rft.date=2019-11&rft.volume=35&rft.issue=4&rft.spage=745&rft.epage=773&rft.pages=745-773&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12211&rft_dat=%3Cproquest_cross%3E2309238632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309238632&rft_id=info:pmid/&rfr_iscdi=true