On the predictability of domain‐independent temporal planners
Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its abil...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2019-11, Vol.35 (4), p.745-773 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 773 |
---|---|
container_issue | 4 |
container_start_page | 745 |
container_title | Computational intelligence |
container_volume | 35 |
creator | Cenamor, Isabel Vallati, Mauro Chrpa, Lukáš |
description | Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances.
This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem.
Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications. |
doi_str_mv | 10.1111/coin.12211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2309238632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309238632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1t5kkK5HBS6HYTfchkwumTJMxmSLd-Qg-o0_i1HHtWZyz-c7_wwfANYILNM6djj4sEMYInYAZojUreU3hKZhBjmnJBKnOwUXOWwghIpTPwP06FMObLfpkjdeDan3nh0MRXWHiTvnw_fnlg7G9HVcYisHu-phUV_SdCsGmfAnOnOqyvfq7c7B5etw0L-Vq_bxsHlalJlSgkmiIGMMVFMbURrWGQoxpizGz3Fa1cQYJZh2DhAttGeVIOSjaWinNKsfIHNxMsX2K73ubB7mN-xTGRokJFJjwmuCRup0onWLOyTrZJ79T6SARlEc_8uhH_voZYTTBH76zh39I2ayXr9PPD8vKaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309238632</pqid></control><display><type>article</type><title>On the predictability of domain‐independent temporal planners</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Cenamor, Isabel ; Vallati, Mauro ; Chrpa, Lukáš</creator><creatorcontrib>Cenamor, Isabel ; Vallati, Mauro ; Chrpa, Lukáš</creatorcontrib><description>Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances.
This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem.
Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12211</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; automated planning ; Empirical analysis ; Performance prediction ; Planning ; predicting performance ; Regression analysis ; temporal planning</subject><ispartof>Computational intelligence, 2019-11, Vol.35 (4), p.745-773</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</citedby><cites>FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</cites><orcidid>0000-0002-8429-3570 ; 0000-0001-9713-7748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Cenamor, Isabel</creatorcontrib><creatorcontrib>Vallati, Mauro</creatorcontrib><creatorcontrib>Chrpa, Lukáš</creatorcontrib><title>On the predictability of domain‐independent temporal planners</title><title>Computational intelligence</title><description>Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances.
This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem.
Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.</description><subject>Algorithms</subject><subject>automated planning</subject><subject>Empirical analysis</subject><subject>Performance prediction</subject><subject>Planning</subject><subject>predicting performance</subject><subject>Regression analysis</subject><subject>temporal planning</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbn2DAnTA1t5kkK5HBS6HYTfchkwumTJMxmSLd-Qg-o0_i1HHtWZyz-c7_wwfANYILNM6djj4sEMYInYAZojUreU3hKZhBjmnJBKnOwUXOWwghIpTPwP06FMObLfpkjdeDan3nh0MRXWHiTvnw_fnlg7G9HVcYisHu-phUV_SdCsGmfAnOnOqyvfq7c7B5etw0L-Vq_bxsHlalJlSgkmiIGMMVFMbURrWGQoxpizGz3Fa1cQYJZh2DhAttGeVIOSjaWinNKsfIHNxMsX2K73ubB7mN-xTGRokJFJjwmuCRup0onWLOyTrZJ79T6SARlEc_8uhH_voZYTTBH76zh39I2ayXr9PPD8vKaKQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Cenamor, Isabel</creator><creator>Vallati, Mauro</creator><creator>Chrpa, Lukáš</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8429-3570</orcidid><orcidid>https://orcid.org/0000-0001-9713-7748</orcidid></search><sort><creationdate>201911</creationdate><title>On the predictability of domain‐independent temporal planners</title><author>Cenamor, Isabel ; Vallati, Mauro ; Chrpa, Lukáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3491-3c01772509dd6dabd40224b227e8e56dfd197ef70389ce7481af09b6aac75f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>automated planning</topic><topic>Empirical analysis</topic><topic>Performance prediction</topic><topic>Planning</topic><topic>predicting performance</topic><topic>Regression analysis</topic><topic>temporal planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenamor, Isabel</creatorcontrib><creatorcontrib>Vallati, Mauro</creatorcontrib><creatorcontrib>Chrpa, Lukáš</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenamor, Isabel</au><au>Vallati, Mauro</au><au>Chrpa, Lukáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the predictability of domain‐independent temporal planners</atitle><jtitle>Computational intelligence</jtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>4</issue><spage>745</spage><epage>773</epage><pages>745-773</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Temporal planning is a research discipline that addresses the problem of generating a totally or a partially ordered sequence of actions that transform the environment from some initial state to a desired goal state, while taking into account time constraints and actions' duration. For its ability to describe and address temporal constraints, temporal planning is of critical importance for a wide range of real‐world applications. Predicting the performance of temporal planners can lead to significant improvements in the area, as planners can then be combined in order to boost the performance on a given set of problem instances.
This paper investigates the predictability of the state‐of‐the‐art temporal planners by introducing a new set of temporal‐specific features and exploiting them for generating classification and regression empirical performance models (EPMs) of considered planners. EPMs are also tested with regard to their ability to select the most promising planner for efficiently solving a given temporal planning problem.
Our extensive empirical analysis indicates that the introduced set of features allows to generate EPMs that can effectively perform algorithm selection, and the use of EPMs is therefore a promising direction for improving the state of the art of temporal planning, hence fostering the use of planning in real‐world applications.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12211</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8429-3570</orcidid><orcidid>https://orcid.org/0000-0001-9713-7748</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2019-11, Vol.35 (4), p.745-773 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2309238632 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Algorithms automated planning Empirical analysis Performance prediction Planning predicting performance Regression analysis temporal planning |
title | On the predictability of domain‐independent temporal planners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20predictability%20of%20domain%E2%80%90independent%20temporal%20planners&rft.jtitle=Computational%20intelligence&rft.au=Cenamor,%20Isabel&rft.date=2019-11&rft.volume=35&rft.issue=4&rft.spage=745&rft.epage=773&rft.pages=745-773&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12211&rft_dat=%3Cproquest_cross%3E2309238632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309238632&rft_id=info:pmid/&rfr_iscdi=true |