Chemisorption-repulsion energies of H2 on surface (110) of Mg1−x M x alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature

In recent years, the popularity of metal hydrides has increased considerably for hydrogen storage and their applications in hydrogen fuel cells. Their potential applications for clean energy are promissory. However, the temperatures required for adsorption and desorption are extremely high, which ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2019-01, Vol.25 (11), p.1-8
Hauptverfasser: Ramírez-Dámaso, G, Ramírez-Rodríguez, O, Caballero, F, Castillo-Alvarado, F L, Roberge, J, Solorza-Guzmán, M, Rojas-Hernández, E, Ortiz-Ubilla, A, Romo-Rico, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 11
container_start_page 1
container_title Journal of molecular modeling
container_volume 25
creator Ramírez-Dámaso, G
Ramírez-Rodríguez, O
Caballero, F
Castillo-Alvarado, F L
Roberge, J
Solorza-Guzmán, M
Rojas-Hernández, E
Ortiz-Ubilla, A
Romo-Rico, Daniel
description In recent years, the popularity of metal hydrides has increased considerably for hydrogen storage and their applications in hydrogen fuel cells. Their potential applications for clean energy are promissory. However, the temperatures required for adsorption and desorption are extremely high, which range between 500 and 700 K, making their use impractical. To overcome these difficulties, the following work considers using three hydride alloys: magnesium-aluminum (MgAl), magnesium-nickel (MgNi), and magnesium-zinc (MgZn). The Mg concentrations were set to be between 80 and 100 wt% in order to reduce the temperatures of adsorption and desorption in contrast with the temperatures of pure magnesium. The chemisorption and repulsion energies of the hydrogen molecule on the surface (110) of the different metallic alloys were studied at 0, 200, 400, 600, and 700 K, respectively. The study was based on the density functional theory (DFT), with the module DMol3 of the molecular simulation program Materials Studio, which was used to obtain these energy values. The results confirm that adding aluminum, nickel, or zinc into magnesium matrix increases the chemisorption and decreases the energy repulsion values on surfaces of the metallic alloys, improving the effectiveness of the hydrogen storage.
doi_str_mv 10.1007/s00894-019-4214-1
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2308968060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308968060</sourcerecordid><originalsourceid>FETCH-proquest_journals_23089680603</originalsourceid><addsrcrecordid>eNqNj89Kw0AQxhdRMNg-gLcBLxW6cWbzxwTxIEXpJZ48eSlL2dSUNBt3sxBvHu3VS1_AJ8uTuAHx3MvMx_cNv-Fj7JIwJMTbG4uY5TFHynksKOZ0wgLM44wnKKJTFlBKyEUe4zmbWrtFRBJJmggRsMPiTe0qq03bVbrhRrWutl6BapTZVMqCLmEpwDvWmVKuFcyI8Hq0iw0NX989FNCDrGv9YWFWwD081HN4rubw2twBhjh87of9j5_9v8JQeIS0IKF0zXp8PQI7tWuVkZ0zasLOSllbNf3bF-zq6fFlseSt0e9O2W611c40PlqJyLdPM0wxOu7qF2WpYL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308968060</pqid></control><display><type>article</type><title>Chemisorption-repulsion energies of H2 on surface (110) of Mg1−x M x alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramírez-Dámaso, G ; Ramírez-Rodríguez, O ; Caballero, F ; Castillo-Alvarado, F L ; Roberge, J ; Solorza-Guzmán, M ; Rojas-Hernández, E ; Ortiz-Ubilla, A ; Romo-Rico, Daniel</creator><creatorcontrib>Ramírez-Dámaso, G ; Ramírez-Rodríguez, O ; Caballero, F ; Castillo-Alvarado, F L ; Roberge, J ; Solorza-Guzmán, M ; Rojas-Hernández, E ; Ortiz-Ubilla, A ; Romo-Rico, Daniel</creatorcontrib><description>In recent years, the popularity of metal hydrides has increased considerably for hydrogen storage and their applications in hydrogen fuel cells. Their potential applications for clean energy are promissory. However, the temperatures required for adsorption and desorption are extremely high, which range between 500 and 700 K, making their use impractical. To overcome these difficulties, the following work considers using three hydride alloys: magnesium-aluminum (MgAl), magnesium-nickel (MgNi), and magnesium-zinc (MgZn). The Mg concentrations were set to be between 80 and 100 wt% in order to reduce the temperatures of adsorption and desorption in contrast with the temperatures of pure magnesium. The chemisorption and repulsion energies of the hydrogen molecule on the surface (110) of the different metallic alloys were studied at 0, 200, 400, 600, and 700 K, respectively. The study was based on the density functional theory (DFT), with the module DMol3 of the molecular simulation program Materials Studio, which was used to obtain these energy values. The results confirm that adding aluminum, nickel, or zinc into magnesium matrix increases the chemisorption and decreases the energy repulsion values on surfaces of the metallic alloys, improving the effectiveness of the hydrogen storage.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-019-4214-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Adsorption ; Aluminum ; Chemisorption ; Clean energy ; Density functional theory ; Desorption ; Fuel cells ; Hydrogen ; Hydrogen fuels ; Hydrogen storage ; Magnesium ; Magnesium base alloys ; Metal hydrides ; Nickel ; Organic chemistry ; Surface chemistry ; Zinc</subject><ispartof>Journal of molecular modeling, 2019-01, Vol.25 (11), p.1-8</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramírez-Dámaso, G</creatorcontrib><creatorcontrib>Ramírez-Rodríguez, O</creatorcontrib><creatorcontrib>Caballero, F</creatorcontrib><creatorcontrib>Castillo-Alvarado, F L</creatorcontrib><creatorcontrib>Roberge, J</creatorcontrib><creatorcontrib>Solorza-Guzmán, M</creatorcontrib><creatorcontrib>Rojas-Hernández, E</creatorcontrib><creatorcontrib>Ortiz-Ubilla, A</creatorcontrib><creatorcontrib>Romo-Rico, Daniel</creatorcontrib><title>Chemisorption-repulsion energies of H2 on surface (110) of Mg1−x M x alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature</title><title>Journal of molecular modeling</title><description>In recent years, the popularity of metal hydrides has increased considerably for hydrogen storage and their applications in hydrogen fuel cells. Their potential applications for clean energy are promissory. However, the temperatures required for adsorption and desorption are extremely high, which range between 500 and 700 K, making their use impractical. To overcome these difficulties, the following work considers using three hydride alloys: magnesium-aluminum (MgAl), magnesium-nickel (MgNi), and magnesium-zinc (MgZn). The Mg concentrations were set to be between 80 and 100 wt% in order to reduce the temperatures of adsorption and desorption in contrast with the temperatures of pure magnesium. The chemisorption and repulsion energies of the hydrogen molecule on the surface (110) of the different metallic alloys were studied at 0, 200, 400, 600, and 700 K, respectively. The study was based on the density functional theory (DFT), with the module DMol3 of the molecular simulation program Materials Studio, which was used to obtain these energy values. The results confirm that adding aluminum, nickel, or zinc into magnesium matrix increases the chemisorption and decreases the energy repulsion values on surfaces of the metallic alloys, improving the effectiveness of the hydrogen storage.</description><subject>Adsorption</subject><subject>Aluminum</subject><subject>Chemisorption</subject><subject>Clean energy</subject><subject>Density functional theory</subject><subject>Desorption</subject><subject>Fuel cells</subject><subject>Hydrogen</subject><subject>Hydrogen fuels</subject><subject>Hydrogen storage</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Metal hydrides</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Surface chemistry</subject><subject>Zinc</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNj89Kw0AQxhdRMNg-gLcBLxW6cWbzxwTxIEXpJZ48eSlL2dSUNBt3sxBvHu3VS1_AJ8uTuAHx3MvMx_cNv-Fj7JIwJMTbG4uY5TFHynksKOZ0wgLM44wnKKJTFlBKyEUe4zmbWrtFRBJJmggRsMPiTe0qq03bVbrhRrWutl6BapTZVMqCLmEpwDvWmVKuFcyI8Hq0iw0NX989FNCDrGv9YWFWwD081HN4rubw2twBhjh87of9j5_9v8JQeIS0IKF0zXp8PQI7tWuVkZ0zasLOSllbNf3bF-zq6fFlseSt0e9O2W611c40PlqJyLdPM0wxOu7qF2WpYL8</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ramírez-Dámaso, G</creator><creator>Ramírez-Rodríguez, O</creator><creator>Caballero, F</creator><creator>Castillo-Alvarado, F L</creator><creator>Roberge, J</creator><creator>Solorza-Guzmán, M</creator><creator>Rojas-Hernández, E</creator><creator>Ortiz-Ubilla, A</creator><creator>Romo-Rico, Daniel</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20190101</creationdate><title>Chemisorption-repulsion energies of H2 on surface (110) of Mg1−x M x alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature</title><author>Ramírez-Dámaso, G ; Ramírez-Rodríguez, O ; Caballero, F ; Castillo-Alvarado, F L ; Roberge, J ; Solorza-Guzmán, M ; Rojas-Hernández, E ; Ortiz-Ubilla, A ; Romo-Rico, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23089680603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Aluminum</topic><topic>Chemisorption</topic><topic>Clean energy</topic><topic>Density functional theory</topic><topic>Desorption</topic><topic>Fuel cells</topic><topic>Hydrogen</topic><topic>Hydrogen fuels</topic><topic>Hydrogen storage</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Metal hydrides</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Surface chemistry</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Dámaso, G</creatorcontrib><creatorcontrib>Ramírez-Rodríguez, O</creatorcontrib><creatorcontrib>Caballero, F</creatorcontrib><creatorcontrib>Castillo-Alvarado, F L</creatorcontrib><creatorcontrib>Roberge, J</creatorcontrib><creatorcontrib>Solorza-Guzmán, M</creatorcontrib><creatorcontrib>Rojas-Hernández, E</creatorcontrib><creatorcontrib>Ortiz-Ubilla, A</creatorcontrib><creatorcontrib>Romo-Rico, Daniel</creatorcontrib><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Dámaso, G</au><au>Ramírez-Rodríguez, O</au><au>Caballero, F</au><au>Castillo-Alvarado, F L</au><au>Roberge, J</au><au>Solorza-Guzmán, M</au><au>Rojas-Hernández, E</au><au>Ortiz-Ubilla, A</au><au>Romo-Rico, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemisorption-repulsion energies of H2 on surface (110) of Mg1−x M x alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature</atitle><jtitle>Journal of molecular modeling</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>25</volume><issue>11</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In recent years, the popularity of metal hydrides has increased considerably for hydrogen storage and their applications in hydrogen fuel cells. Their potential applications for clean energy are promissory. However, the temperatures required for adsorption and desorption are extremely high, which range between 500 and 700 K, making their use impractical. To overcome these difficulties, the following work considers using three hydride alloys: magnesium-aluminum (MgAl), magnesium-nickel (MgNi), and magnesium-zinc (MgZn). The Mg concentrations were set to be between 80 and 100 wt% in order to reduce the temperatures of adsorption and desorption in contrast with the temperatures of pure magnesium. The chemisorption and repulsion energies of the hydrogen molecule on the surface (110) of the different metallic alloys were studied at 0, 200, 400, 600, and 700 K, respectively. The study was based on the density functional theory (DFT), with the module DMol3 of the molecular simulation program Materials Studio, which was used to obtain these energy values. The results confirm that adding aluminum, nickel, or zinc into magnesium matrix increases the chemisorption and decreases the energy repulsion values on surfaces of the metallic alloys, improving the effectiveness of the hydrogen storage.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00894-019-4214-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2019-01, Vol.25 (11), p.1-8
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_journals_2308968060
source Springer Nature - Complete Springer Journals
subjects Adsorption
Aluminum
Chemisorption
Clean energy
Density functional theory
Desorption
Fuel cells
Hydrogen
Hydrogen fuels
Hydrogen storage
Magnesium
Magnesium base alloys
Metal hydrides
Nickel
Organic chemistry
Surface chemistry
Zinc
title Chemisorption-repulsion energies of H2 on surface (110) of Mg1−x M x alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemisorption-repulsion%20energies%20of%20H2%20on%20surface%20(110)%20of%20Mg1%E2%88%92x%20M%20x%20alloys%20(M%20=%20Al,%20Ni,%20Zn;%200.0%E2%80%89%E2%89%A4%E2%80%89x%E2%80%89%E2%89%A4%E2%80%890.20)%20as%20a%20function%20of%20temperature&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Ram%C3%ADrez-D%C3%A1maso,%20G&rft.date=2019-01-01&rft.volume=25&rft.issue=11&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-019-4214-1&rft_dat=%3Cproquest%3E2308968060%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308968060&rft_id=info:pmid/&rfr_iscdi=true