Algebraic elliptic cohomology theory and flops I

We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2019-12, Vol.375 (3-4), p.1823-1855
Hauptverfasser: Levine, Marc, Yang, Yaping, Zhao, Gufang, Riou, Joël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1855
container_issue 3-4
container_start_page 1823
container_title Mathematische annalen
container_volume 375
creator Levine, Marc
Yang, Yaping
Zhao, Gufang
Riou, Joël
description We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.
doi_str_mv 10.1007/s00208-019-01880-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308861563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308861563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC5-hM0mySYyk-CoIXPYdsNumDbbMmW2i_vdEVvHkYZmD-D_gRcotwjwDyIQMwUBRQl1EK6PGMTHDGGUUF8pxMyl9QoThekquctwDAAcSEwLxb-SbZjat81236oRwuruMudnF1qoa1j-lU2X1bhS72uVpek4tgu-xvfveUfDw9vi9e6Ovb83Ixf6WOox5oAxqsRIktD06pEJgUMqAFzZmomfNtw1jjdC0chFnrrQitUloJb3UtBfIpuRtz-xQ_Dz4PZhsPaV8qDeOgVI2i5kXFRpVLMefkg-nTZmfTySCYbzJmJGMKGfNDxhyLiY-mXMT7lU9_0f-4vgAX3mWW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308861563</pqid></control><display><type>article</type><title>Algebraic elliptic cohomology theory and flops I</title><source>SpringerNature Journals</source><creator>Levine, Marc ; Yang, Yaping ; Zhao, Gufang ; Riou, Joël</creator><creatorcontrib>Levine, Marc ; Yang, Yaping ; Zhao, Gufang ; Riou, Joël</creatorcontrib><description>We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-019-01880-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Homology ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2019-12, Vol.375 (3-4), p.1823-1855</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</citedby><cites>FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-019-01880-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-019-01880-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Levine, Marc</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><creatorcontrib>Zhao, Gufang</creatorcontrib><creatorcontrib>Riou, Joël</creatorcontrib><title>Algebraic elliptic cohomology theory and flops I</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.</description><subject>Algebra</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwNOC5-hM0mySYyk-CoIXPYdsNumDbbMmW2i_vdEVvHkYZmD-D_gRcotwjwDyIQMwUBRQl1EK6PGMTHDGGUUF8pxMyl9QoThekquctwDAAcSEwLxb-SbZjat81236oRwuruMudnF1qoa1j-lU2X1bhS72uVpek4tgu-xvfveUfDw9vi9e6Ovb83Ixf6WOox5oAxqsRIktD06pEJgUMqAFzZmomfNtw1jjdC0chFnrrQitUloJb3UtBfIpuRtz-xQ_Dz4PZhsPaV8qDeOgVI2i5kXFRpVLMefkg-nTZmfTySCYbzJmJGMKGfNDxhyLiY-mXMT7lU9_0f-4vgAX3mWW</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Levine, Marc</creator><creator>Yang, Yaping</creator><creator>Zhao, Gufang</creator><creator>Riou, Joël</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Algebraic elliptic cohomology theory and flops I</title><author>Levine, Marc ; Yang, Yaping ; Zhao, Gufang ; Riou, Joël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levine, Marc</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><creatorcontrib>Zhao, Gufang</creatorcontrib><creatorcontrib>Riou, Joël</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levine, Marc</au><au>Yang, Yaping</au><au>Zhao, Gufang</au><au>Riou, Joël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic elliptic cohomology theory and flops I</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>375</volume><issue>3-4</issue><spage>1823</spage><epage>1855</epage><pages>1823-1855</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-019-01880-x</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2019-12, Vol.375 (3-4), p.1823-1855
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2308861563
source SpringerNature Journals
subjects Algebra
Homology
Mathematics
Mathematics and Statistics
title Algebraic elliptic cohomology theory and flops I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20elliptic%20cohomology%20theory%20and%20flops%20I&rft.jtitle=Mathematische%20annalen&rft.au=Levine,%20Marc&rft.date=2019-12-01&rft.volume=375&rft.issue=3-4&rft.spage=1823&rft.epage=1855&rft.pages=1823-1855&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-019-01880-x&rft_dat=%3Cproquest_cross%3E2308861563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308861563&rft_id=info:pmid/&rfr_iscdi=true