Algebraic elliptic cohomology theory and flops I
We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flo...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2019-12, Vol.375 (3-4), p.1823-1855 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1855 |
---|---|
container_issue | 3-4 |
container_start_page | 1823 |
container_title | Mathematische annalen |
container_volume | 375 |
creator | Levine, Marc Yang, Yaping Zhao, Gufang Riou, Joël |
description | We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting. |
doi_str_mv | 10.1007/s00208-019-01880-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308861563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308861563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC5-hM0mySYyk-CoIXPYdsNumDbbMmW2i_vdEVvHkYZmD-D_gRcotwjwDyIQMwUBRQl1EK6PGMTHDGGUUF8pxMyl9QoThekquctwDAAcSEwLxb-SbZjat81236oRwuruMudnF1qoa1j-lU2X1bhS72uVpek4tgu-xvfveUfDw9vi9e6Ovb83Ixf6WOox5oAxqsRIktD06pEJgUMqAFzZmomfNtw1jjdC0chFnrrQitUloJb3UtBfIpuRtz-xQ_Dz4PZhsPaV8qDeOgVI2i5kXFRpVLMefkg-nTZmfTySCYbzJmJGMKGfNDxhyLiY-mXMT7lU9_0f-4vgAX3mWW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308861563</pqid></control><display><type>article</type><title>Algebraic elliptic cohomology theory and flops I</title><source>SpringerNature Journals</source><creator>Levine, Marc ; Yang, Yaping ; Zhao, Gufang ; Riou, Joël</creator><creatorcontrib>Levine, Marc ; Yang, Yaping ; Zhao, Gufang ; Riou, Joël</creatorcontrib><description>We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-019-01880-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Homology ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2019-12, Vol.375 (3-4), p.1823-1855</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</citedby><cites>FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-019-01880-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-019-01880-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Levine, Marc</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><creatorcontrib>Zhao, Gufang</creatorcontrib><creatorcontrib>Riou, Joël</creatorcontrib><title>Algebraic elliptic cohomology theory and flops I</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.</description><subject>Algebra</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKtfwNOC5-hM0mySYyk-CoIXPYdsNumDbbMmW2i_vdEVvHkYZmD-D_gRcotwjwDyIQMwUBRQl1EK6PGMTHDGGUUF8pxMyl9QoThekquctwDAAcSEwLxb-SbZjat81236oRwuruMudnF1qoa1j-lU2X1bhS72uVpek4tgu-xvfveUfDw9vi9e6Ovb83Ixf6WOox5oAxqsRIktD06pEJgUMqAFzZmomfNtw1jjdC0chFnrrQitUloJb3UtBfIpuRtz-xQ_Dz4PZhsPaV8qDeOgVI2i5kXFRpVLMefkg-nTZmfTySCYbzJmJGMKGfNDxhyLiY-mXMT7lU9_0f-4vgAX3mWW</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Levine, Marc</creator><creator>Yang, Yaping</creator><creator>Zhao, Gufang</creator><creator>Riou, Joël</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Algebraic elliptic cohomology theory and flops I</title><author>Levine, Marc ; Yang, Yaping ; Zhao, Gufang ; Riou, Joël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b090a7171d3fc88ff2757f1a0932562cedb22bc965c0f4dea5fd88985ea967513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levine, Marc</creatorcontrib><creatorcontrib>Yang, Yaping</creatorcontrib><creatorcontrib>Zhao, Gufang</creatorcontrib><creatorcontrib>Riou, Joël</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levine, Marc</au><au>Yang, Yaping</au><au>Zhao, Gufang</au><au>Riou, Joël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic elliptic cohomology theory and flops I</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>375</volume><issue>3-4</issue><spage>1823</spage><epage>1855</epage><pages>1823-1855</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We define the algebraic elliptic cohomology theory coming from Krichever’s elliptic genus as an oriented cohomology theory on smooth varieties over an arbitrary perfect field. We show that in the algebraic cobordism ring with rational coefficients, the ideal generated by differences of classical flops coincides with the kernel of Krichever’s elliptic genus. This generalizes a theorem of B. Totaro in the complex analytic setting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-019-01880-x</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2019-12, Vol.375 (3-4), p.1823-1855 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2308861563 |
source | SpringerNature Journals |
subjects | Algebra Homology Mathematics Mathematics and Statistics |
title | Algebraic elliptic cohomology theory and flops I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20elliptic%20cohomology%20theory%20and%20flops%20I&rft.jtitle=Mathematische%20annalen&rft.au=Levine,%20Marc&rft.date=2019-12-01&rft.volume=375&rft.issue=3-4&rft.spage=1823&rft.epage=1855&rft.pages=1823-1855&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-019-01880-x&rft_dat=%3Cproquest_cross%3E2308861563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308861563&rft_id=info:pmid/&rfr_iscdi=true |