Pricing of Perpetual American Put Option with Sub-Mixed Fractional Brownian Motion

The pricing problem of perpetual American put options is investigated when the underlying asset price follows a sub-mixed fractional Brownian motion process. First of all, the sub-mixed fractional Black-Scholes partial differential equation is established by using the delta hedging method and the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2019-08, Vol.22 (4), p.1145-1154
Hauptverfasser: Xu, Feng, Zhou, Shengwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pricing problem of perpetual American put options is investigated when the underlying asset price follows a sub-mixed fractional Brownian motion process. First of all, the sub-mixed fractional Black-Scholes partial differential equation is established by using the delta hedging method and the principle of no arbitrage. Then, by solving the free boundary problem, we get the pricing formula of the perpetual American put option.
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2019-0060