Pricing of Perpetual American Put Option with Sub-Mixed Fractional Brownian Motion
The pricing problem of perpetual American put options is investigated when the underlying asset price follows a sub-mixed fractional Brownian motion process. First of all, the sub-mixed fractional Black-Scholes partial differential equation is established by using the delta hedging method and the pr...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2019-08, Vol.22 (4), p.1145-1154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pricing problem of perpetual American put options is investigated when the underlying asset price follows a sub-mixed fractional Brownian motion process. First of all, the sub-mixed fractional Black-Scholes partial differential equation is established by using the delta hedging method and the principle of no arbitrage. Then, by solving the free boundary problem, we get the pricing formula of the perpetual American put option. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.1515/fca-2019-0060 |