Thermal optimization of solar dish collector for indirect vapor generation
Summary This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected s...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2019-10, Vol.43 (13), p.7240-7253, Article er.4748 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7253 |
---|---|
container_issue | 13 |
container_start_page | 7240 |
container_title | International journal of energy research |
container_volume | 43 |
creator | Ghazouani, Karima Skouri, Safa Bouadila, Salwa Guizani, Amen Allah |
description | Summary
This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased. |
doi_str_mv | 10.1002/er.4748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308501660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308501660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKv4FwI--CBbJ5fu5VFK64WCIBX6FrK7E5uy3azJVqm_3rT11YdhOMx35sAh5JrBiAHwe_Qjmcn8hAwYFEXCmFyekgGIVCQFZMtzchHCGiDeWDYgL4sV-o1uqOt6u7E_ureupc7Q4BrtaW3DilauabDqnacmjm1r66OkX7qL8gNb9AfXJTkzugl49beH5H02XUyekvnr4_PkYZ5UImV5YgpeZizTjCMDw2WOhWRQCsnHRmuUkNdQImJe1GlaV5UomQTNa4HGABgUQ3Jz_Nt597nF0Ku12_o2RiouIB8DS1OI1O2RqrwLwaNRnbcb7XeKgdoXpdCrfVGRvDuS37bB3X-Ymr4d6F9H4Wlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308501660</pqid></control><display><type>article</type><title>Thermal optimization of solar dish collector for indirect vapor generation</title><source>Wiley Online Library</source><creator>Ghazouani, Karima ; Skouri, Safa ; Bouadila, Salwa ; Guizani, Amen Allah</creator><creatorcontrib>Ghazouani, Karima ; Skouri, Safa ; Bouadila, Salwa ; Guizani, Amen Allah</creatorcontrib><description>Summary
This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4748</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Climatic conditions ; Concentrators ; Energy efficiency ; Energy losses ; Flow rates ; Heat ; Heat exchangers ; Inlets (waterways) ; Mass flow rate ; Optimization ; parabolic dish ; Prototypes ; Solar collectors ; Solar energy ; solar heat exchanger ; Thermal energy ; thermal energy efficiency ; vapor generation ; Vapors ; Water ; Water flow ; Water masses ; Water tanks ; Water temperature</subject><ispartof>International journal of energy research, 2019-10, Vol.43 (13), p.7240-7253, Article er.4748</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</citedby><cites>FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</cites><orcidid>0000-0002-6366-2795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Ghazouani, Karima</creatorcontrib><creatorcontrib>Skouri, Safa</creatorcontrib><creatorcontrib>Bouadila, Salwa</creatorcontrib><creatorcontrib>Guizani, Amen Allah</creatorcontrib><title>Thermal optimization of solar dish collector for indirect vapor generation</title><title>International journal of energy research</title><description>Summary
This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.</description><subject>Climatic conditions</subject><subject>Concentrators</subject><subject>Energy efficiency</subject><subject>Energy losses</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Inlets (waterways)</subject><subject>Mass flow rate</subject><subject>Optimization</subject><subject>parabolic dish</subject><subject>Prototypes</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>solar heat exchanger</subject><subject>Thermal energy</subject><subject>thermal energy efficiency</subject><subject>vapor generation</subject><subject>Vapors</subject><subject>Water</subject><subject>Water flow</subject><subject>Water masses</subject><subject>Water tanks</subject><subject>Water temperature</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKv4FwI--CBbJ5fu5VFK64WCIBX6FrK7E5uy3azJVqm_3rT11YdhOMx35sAh5JrBiAHwe_Qjmcn8hAwYFEXCmFyekgGIVCQFZMtzchHCGiDeWDYgL4sV-o1uqOt6u7E_ureupc7Q4BrtaW3DilauabDqnacmjm1r66OkX7qL8gNb9AfXJTkzugl49beH5H02XUyekvnr4_PkYZ5UImV5YgpeZizTjCMDw2WOhWRQCsnHRmuUkNdQImJe1GlaV5UomQTNa4HGABgUQ3Jz_Nt597nF0Ku12_o2RiouIB8DS1OI1O2RqrwLwaNRnbcb7XeKgdoXpdCrfVGRvDuS37bB3X-Ymr4d6F9H4Wlk</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Ghazouani, Karima</creator><creator>Skouri, Safa</creator><creator>Bouadila, Salwa</creator><creator>Guizani, Amen Allah</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6366-2795</orcidid></search><sort><creationdate>20191025</creationdate><title>Thermal optimization of solar dish collector for indirect vapor generation</title><author>Ghazouani, Karima ; Skouri, Safa ; Bouadila, Salwa ; Guizani, Amen Allah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Climatic conditions</topic><topic>Concentrators</topic><topic>Energy efficiency</topic><topic>Energy losses</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Inlets (waterways)</topic><topic>Mass flow rate</topic><topic>Optimization</topic><topic>parabolic dish</topic><topic>Prototypes</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>solar heat exchanger</topic><topic>Thermal energy</topic><topic>thermal energy efficiency</topic><topic>vapor generation</topic><topic>Vapors</topic><topic>Water</topic><topic>Water flow</topic><topic>Water masses</topic><topic>Water tanks</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazouani, Karima</creatorcontrib><creatorcontrib>Skouri, Safa</creatorcontrib><creatorcontrib>Bouadila, Salwa</creatorcontrib><creatorcontrib>Guizani, Amen Allah</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazouani, Karima</au><au>Skouri, Safa</au><au>Bouadila, Salwa</au><au>Guizani, Amen Allah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal optimization of solar dish collector for indirect vapor generation</atitle><jtitle>International journal of energy research</jtitle><date>2019-10-25</date><risdate>2019</risdate><volume>43</volume><issue>13</issue><spage>7240</spage><epage>7253</epage><pages>7240-7253</pages><artnum>er.4748</artnum><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4748</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6366-2795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2019-10, Vol.43 (13), p.7240-7253, Article er.4748 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2308501660 |
source | Wiley Online Library |
subjects | Climatic conditions Concentrators Energy efficiency Energy losses Flow rates Heat Heat exchangers Inlets (waterways) Mass flow rate Optimization parabolic dish Prototypes Solar collectors Solar energy solar heat exchanger Thermal energy thermal energy efficiency vapor generation Vapors Water Water flow Water masses Water tanks Water temperature |
title | Thermal optimization of solar dish collector for indirect vapor generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20optimization%20of%20solar%20dish%20collector%20for%20indirect%20vapor%20generation&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ghazouani,%20Karima&rft.date=2019-10-25&rft.volume=43&rft.issue=13&rft.spage=7240&rft.epage=7253&rft.pages=7240-7253&rft.artnum=er.4748&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4748&rft_dat=%3Cproquest_cross%3E2308501660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308501660&rft_id=info:pmid/&rfr_iscdi=true |