Thermal optimization of solar dish collector for indirect vapor generation

Summary This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2019-10, Vol.43 (13), p.7240-7253, Article er.4748
Hauptverfasser: Ghazouani, Karima, Skouri, Safa, Bouadila, Salwa, Guizani, Amen Allah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7253
container_issue 13
container_start_page 7240
container_title International journal of energy research
container_volume 43
creator Ghazouani, Karima
Skouri, Safa
Bouadila, Salwa
Guizani, Amen Allah
description Summary This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.
doi_str_mv 10.1002/er.4748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308501660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308501660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKv4FwI--CBbJ5fu5VFK64WCIBX6FrK7E5uy3azJVqm_3rT11YdhOMx35sAh5JrBiAHwe_Qjmcn8hAwYFEXCmFyekgGIVCQFZMtzchHCGiDeWDYgL4sV-o1uqOt6u7E_ureupc7Q4BrtaW3DilauabDqnacmjm1r66OkX7qL8gNb9AfXJTkzugl49beH5H02XUyekvnr4_PkYZ5UImV5YgpeZizTjCMDw2WOhWRQCsnHRmuUkNdQImJe1GlaV5UomQTNa4HGABgUQ3Jz_Nt597nF0Ku12_o2RiouIB8DS1OI1O2RqrwLwaNRnbcb7XeKgdoXpdCrfVGRvDuS37bB3X-Ymr4d6F9H4Wlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308501660</pqid></control><display><type>article</type><title>Thermal optimization of solar dish collector for indirect vapor generation</title><source>Wiley Online Library</source><creator>Ghazouani, Karima ; Skouri, Safa ; Bouadila, Salwa ; Guizani, Amen Allah</creator><creatorcontrib>Ghazouani, Karima ; Skouri, Safa ; Bouadila, Salwa ; Guizani, Amen Allah</creatorcontrib><description>Summary This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4748</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Climatic conditions ; Concentrators ; Energy efficiency ; Energy losses ; Flow rates ; Heat ; Heat exchangers ; Inlets (waterways) ; Mass flow rate ; Optimization ; parabolic dish ; Prototypes ; Solar collectors ; Solar energy ; solar heat exchanger ; Thermal energy ; thermal energy efficiency ; vapor generation ; Vapors ; Water ; Water flow ; Water masses ; Water tanks ; Water temperature</subject><ispartof>International journal of energy research, 2019-10, Vol.43 (13), p.7240-7253, Article er.4748</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</citedby><cites>FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</cites><orcidid>0000-0002-6366-2795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Ghazouani, Karima</creatorcontrib><creatorcontrib>Skouri, Safa</creatorcontrib><creatorcontrib>Bouadila, Salwa</creatorcontrib><creatorcontrib>Guizani, Amen Allah</creatorcontrib><title>Thermal optimization of solar dish collector for indirect vapor generation</title><title>International journal of energy research</title><description>Summary This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.</description><subject>Climatic conditions</subject><subject>Concentrators</subject><subject>Energy efficiency</subject><subject>Energy losses</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Inlets (waterways)</subject><subject>Mass flow rate</subject><subject>Optimization</subject><subject>parabolic dish</subject><subject>Prototypes</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>solar heat exchanger</subject><subject>Thermal energy</subject><subject>thermal energy efficiency</subject><subject>vapor generation</subject><subject>Vapors</subject><subject>Water</subject><subject>Water flow</subject><subject>Water masses</subject><subject>Water tanks</subject><subject>Water temperature</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKv4FwI--CBbJ5fu5VFK64WCIBX6FrK7E5uy3azJVqm_3rT11YdhOMx35sAh5JrBiAHwe_Qjmcn8hAwYFEXCmFyekgGIVCQFZMtzchHCGiDeWDYgL4sV-o1uqOt6u7E_ureupc7Q4BrtaW3DilauabDqnacmjm1r66OkX7qL8gNb9AfXJTkzugl49beH5H02XUyekvnr4_PkYZ5UImV5YgpeZizTjCMDw2WOhWRQCsnHRmuUkNdQImJe1GlaV5UomQTNa4HGABgUQ3Jz_Nt597nF0Ku12_o2RiouIB8DS1OI1O2RqrwLwaNRnbcb7XeKgdoXpdCrfVGRvDuS37bB3X-Ymr4d6F9H4Wlk</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Ghazouani, Karima</creator><creator>Skouri, Safa</creator><creator>Bouadila, Salwa</creator><creator>Guizani, Amen Allah</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6366-2795</orcidid></search><sort><creationdate>20191025</creationdate><title>Thermal optimization of solar dish collector for indirect vapor generation</title><author>Ghazouani, Karima ; Skouri, Safa ; Bouadila, Salwa ; Guizani, Amen Allah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-f92b717a12e10f248e9410b3425faae408d0beee89d66dcc3b140a2d3eff00fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Climatic conditions</topic><topic>Concentrators</topic><topic>Energy efficiency</topic><topic>Energy losses</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Inlets (waterways)</topic><topic>Mass flow rate</topic><topic>Optimization</topic><topic>parabolic dish</topic><topic>Prototypes</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>solar heat exchanger</topic><topic>Thermal energy</topic><topic>thermal energy efficiency</topic><topic>vapor generation</topic><topic>Vapors</topic><topic>Water</topic><topic>Water flow</topic><topic>Water masses</topic><topic>Water tanks</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazouani, Karima</creatorcontrib><creatorcontrib>Skouri, Safa</creatorcontrib><creatorcontrib>Bouadila, Salwa</creatorcontrib><creatorcontrib>Guizani, Amen Allah</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazouani, Karima</au><au>Skouri, Safa</au><au>Bouadila, Salwa</au><au>Guizani, Amen Allah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal optimization of solar dish collector for indirect vapor generation</atitle><jtitle>International journal of energy research</jtitle><date>2019-10-25</date><risdate>2019</risdate><volume>43</volume><issue>13</issue><spage>7240</spage><epage>7253</epage><pages>7240-7253</pages><artnum>er.4748</artnum><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary This work presented the performance analysis of a solar parabolic concentrator prototype. The purpose of this paper is to achieve most quantity of vapor production with different water flows. The principal component of the solar concentrator is a new absorber concept that absorbs reflected solar rays and transports it to a heat exchanger in order to generate vapor. Climatic conditions, inlet/outlet oil temperatures of the tubular solar heat exchanger, water tank temperature, and inlet/outlet water temperatures of the mixed heat exchanger were recorded experimentally during three days in November 2018. The absorbed energy, losses energy, concentrated energy, and vapor heat energy of the system were determined. Results of this work, the solar system provides thermal energy efficiency varied from 60% to 70% and a concentration factor around 350 for three water mass flow rates. In this experiment, the optimum value of vapor mass is 6 kg/h with 0.016 kg/s of water flow. Consequently, to achieve the most quantity of vapor, the water flow should be decreased.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4748</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6366-2795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2019-10, Vol.43 (13), p.7240-7253, Article er.4748
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2308501660
source Wiley Online Library
subjects Climatic conditions
Concentrators
Energy efficiency
Energy losses
Flow rates
Heat
Heat exchangers
Inlets (waterways)
Mass flow rate
Optimization
parabolic dish
Prototypes
Solar collectors
Solar energy
solar heat exchanger
Thermal energy
thermal energy efficiency
vapor generation
Vapors
Water
Water flow
Water masses
Water tanks
Water temperature
title Thermal optimization of solar dish collector for indirect vapor generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20optimization%20of%20solar%20dish%20collector%20for%20indirect%20vapor%20generation&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ghazouani,%20Karima&rft.date=2019-10-25&rft.volume=43&rft.issue=13&rft.spage=7240&rft.epage=7253&rft.pages=7240-7253&rft.artnum=er.4748&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4748&rft_dat=%3Cproquest_cross%3E2308501660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308501660&rft_id=info:pmid/&rfr_iscdi=true