A latent class growth model for migrants’ remittances: an application to the German Socio-Economic Panel

We propose a latent class mixture growth model with concomitant variables to study the time profiles of international remittances sent by first-generation migrants in Germany from 1996 to 2012. The latent class approach enables us to identify homogeneous subgroups of migrants associated with differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2019-10, Vol.182 (4), p.1607-1632
Hauptverfasser: Bacci, Silvia, Bartolucci, Francesco, Bettin, Giulia, Pigini, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1632
container_issue 4
container_start_page 1607
container_title Journal of the Royal Statistical Society. Series A, Statistics in society
container_volume 182
creator Bacci, Silvia
Bartolucci, Francesco
Bettin, Giulia
Pigini, Claudia
description We propose a latent class mixture growth model with concomitant variables to study the time profiles of international remittances sent by first-generation migrants in Germany from 1996 to 2012. The latent class approach enables us to identify homogeneous subgroups of migrants associated with different trajectories for their remitting behaviour, which can be interpreted in the light of the theoretical economic background. In addition, the inclusion of concomitant covariates allows us to uncover whether the assignment of migrants to a specific subgroup can be ascribed to their observable characteristics (e.g. their intention to return home), as conjectured by the theoretical models. The model proposed is easily estimated through an expectation–maximization algorithm. Results show that migrants can be clustered in three groups, two of which reflect the evolution of remittances predicted by economic theory.
doi_str_mv 10.1111/rssa.12475
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2308421127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48547282</jstor_id><sourcerecordid>48547282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-7f1ac91256f8eaea5684154aac5fb2fd4c0c0e4bcc2d723c3cf99ed06683b8243</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsb98KAO2FqfifJshSrQkGwCu5CmknqlJlJTVJKd76Gr-eTOHXUpWdzN993LhwAzhEcoS7XIUY9QphydgAGiBY8l4K9HIIBlAXNkZTiGJzEuIL7cD4AfJzVOtk2ZabWMWbL4LfpNWt8aevM-ZA11TLoNsXP948s2KZKSbfGxlNw5HQd7dnPHYLn6c3T5C6fPdzeT8az3BBWsJw7pI1EmBVOWG01KwRFjGptmFtgV1IDDbR0YQwuOSaGGCelLWFRCLIQmJIhuOx718G_bWxMauU3oe1eKkygoBghzDvqqqdM8DEG69Q6VI0OO4Wg2g-j9sOo72E6GPXwtqrt7h9SPc7n41_nondWMfnw51DBKMcCky8YEnAy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308421127</pqid></control><display><type>article</type><title>A latent class growth model for migrants’ remittances: an application to the German Socio-Economic Panel</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bacci, Silvia ; Bartolucci, Francesco ; Bettin, Giulia ; Pigini, Claudia</creator><creatorcontrib>Bacci, Silvia ; Bartolucci, Francesco ; Bettin, Giulia ; Pigini, Claudia</creatorcontrib><description>We propose a latent class mixture growth model with concomitant variables to study the time profiles of international remittances sent by first-generation migrants in Germany from 1996 to 2012. The latent class approach enables us to identify homogeneous subgroups of migrants associated with different trajectories for their remitting behaviour, which can be interpreted in the light of the theoretical economic background. In addition, the inclusion of concomitant covariates allows us to uncover whether the assignment of migrants to a specific subgroup can be ascribed to their observable characteristics (e.g. their intention to return home), as conjectured by the theoretical models. The model proposed is easily estimated through an expectation–maximization algorithm. Results show that migrants can be clustered in three groups, two of which reflect the evolution of remittances predicted by economic theory.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/rssa.12475</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Algorithms ; Ascription ; Concomitant variables approach ; Economic models ; Economic theory ; Growth models ; Latent class analysis ; Latent class model ; Latent trajectory model ; Longitudinal data ; Migrants ; Original Articles ; Remittances ; Subgroups</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2019-10, Vol.182 (4), p.1607-1632</ispartof><rights>2019 Royal Statistical Society</rights><rights>Copyright © 2019 The Royal Statistical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-7f1ac91256f8eaea5684154aac5fb2fd4c0c0e4bcc2d723c3cf99ed06683b8243</citedby><cites>FETCH-LOGICAL-c3565-7f1ac91256f8eaea5684154aac5fb2fd4c0c0e4bcc2d723c3cf99ed06683b8243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48547282$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48547282$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27923,27924,45573,45574,58016,58249</link.rule.ids></links><search><creatorcontrib>Bacci, Silvia</creatorcontrib><creatorcontrib>Bartolucci, Francesco</creatorcontrib><creatorcontrib>Bettin, Giulia</creatorcontrib><creatorcontrib>Pigini, Claudia</creatorcontrib><title>A latent class growth model for migrants’ remittances: an application to the German Socio-Economic Panel</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>We propose a latent class mixture growth model with concomitant variables to study the time profiles of international remittances sent by first-generation migrants in Germany from 1996 to 2012. The latent class approach enables us to identify homogeneous subgroups of migrants associated with different trajectories for their remitting behaviour, which can be interpreted in the light of the theoretical economic background. In addition, the inclusion of concomitant covariates allows us to uncover whether the assignment of migrants to a specific subgroup can be ascribed to their observable characteristics (e.g. their intention to return home), as conjectured by the theoretical models. The model proposed is easily estimated through an expectation–maximization algorithm. Results show that migrants can be clustered in three groups, two of which reflect the evolution of remittances predicted by economic theory.</description><subject>Algorithms</subject><subject>Ascription</subject><subject>Concomitant variables approach</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Growth models</subject><subject>Latent class analysis</subject><subject>Latent class model</subject><subject>Latent trajectory model</subject><subject>Longitudinal data</subject><subject>Migrants</subject><subject>Original Articles</subject><subject>Remittances</subject><subject>Subgroups</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsb98KAO2FqfifJshSrQkGwCu5CmknqlJlJTVJKd76Gr-eTOHXUpWdzN993LhwAzhEcoS7XIUY9QphydgAGiBY8l4K9HIIBlAXNkZTiGJzEuIL7cD4AfJzVOtk2ZabWMWbL4LfpNWt8aevM-ZA11TLoNsXP948s2KZKSbfGxlNw5HQd7dnPHYLn6c3T5C6fPdzeT8az3BBWsJw7pI1EmBVOWG01KwRFjGptmFtgV1IDDbR0YQwuOSaGGCelLWFRCLIQmJIhuOx718G_bWxMauU3oe1eKkygoBghzDvqqqdM8DEG69Q6VI0OO4Wg2g-j9sOo72E6GPXwtqrt7h9SPc7n41_nondWMfnw51DBKMcCky8YEnAy</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Bacci, Silvia</creator><creator>Bartolucci, Francesco</creator><creator>Bettin, Giulia</creator><creator>Pigini, Claudia</creator><general>Wiley</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>A latent class growth model for migrants’ remittances</title><author>Bacci, Silvia ; Bartolucci, Francesco ; Bettin, Giulia ; Pigini, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-7f1ac91256f8eaea5684154aac5fb2fd4c0c0e4bcc2d723c3cf99ed06683b8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Ascription</topic><topic>Concomitant variables approach</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Growth models</topic><topic>Latent class analysis</topic><topic>Latent class model</topic><topic>Latent trajectory model</topic><topic>Longitudinal data</topic><topic>Migrants</topic><topic>Original Articles</topic><topic>Remittances</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacci, Silvia</creatorcontrib><creatorcontrib>Bartolucci, Francesco</creatorcontrib><creatorcontrib>Bettin, Giulia</creatorcontrib><creatorcontrib>Pigini, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacci, Silvia</au><au>Bartolucci, Francesco</au><au>Bettin, Giulia</au><au>Pigini, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A latent class growth model for migrants’ remittances: an application to the German Socio-Economic Panel</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2019-10</date><risdate>2019</risdate><volume>182</volume><issue>4</issue><spage>1607</spage><epage>1632</epage><pages>1607-1632</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>We propose a latent class mixture growth model with concomitant variables to study the time profiles of international remittances sent by first-generation migrants in Germany from 1996 to 2012. The latent class approach enables us to identify homogeneous subgroups of migrants associated with different trajectories for their remitting behaviour, which can be interpreted in the light of the theoretical economic background. In addition, the inclusion of concomitant covariates allows us to uncover whether the assignment of migrants to a specific subgroup can be ascribed to their observable characteristics (e.g. their intention to return home), as conjectured by the theoretical models. The model proposed is easily estimated through an expectation–maximization algorithm. Results show that migrants can be clustered in three groups, two of which reflect the evolution of remittances predicted by economic theory.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/rssa.12475</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-1998
ispartof Journal of the Royal Statistical Society. Series A, Statistics in society, 2019-10, Vol.182 (4), p.1607-1632
issn 0964-1998
1467-985X
language eng
recordid cdi_proquest_journals_2308421127
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Ascription
Concomitant variables approach
Economic models
Economic theory
Growth models
Latent class analysis
Latent class model
Latent trajectory model
Longitudinal data
Migrants
Original Articles
Remittances
Subgroups
title A latent class growth model for migrants’ remittances: an application to the German Socio-Economic Panel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20latent%20class%20growth%20model%20for%20migrants%E2%80%99%20remittances:%20an%20application%20to%20the%20German%20Socio-Economic%20Panel&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Bacci,%20Silvia&rft.date=2019-10&rft.volume=182&rft.issue=4&rft.spage=1607&rft.epage=1632&rft.pages=1607-1632&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/rssa.12475&rft_dat=%3Cjstor_proqu%3E48547282%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308421127&rft_id=info:pmid/&rft_jstor_id=48547282&rfr_iscdi=true