Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning

Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2020-01, Vol.50 (1), p.324-337
Hauptverfasser: Jiang, Junjun, Yu, Yi, Tang, Suhua, Ma, Jiayi, Aizawa, Akiko, Aizawa, Kiyoharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 1
container_start_page 324
container_title IEEE transactions on cybernetics
container_volume 50
creator Jiang, Junjun
Yu, Yi
Tang, Suhua
Ma, Jiayi
Aizawa, Akiko
Aizawa, Kiyoharu
description Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of the image patch. In addition, when they are confronted with misalignment or the small sample size (SSS) problem, the hallucination performance is very poor. To this end, this paper incorporates the contextual information of the image patch and proposes a powerful and efficient context-patch-based face hallucination approach, namely, thresholding locality-constrained representation and reproducing learning (TLcR-RL). Under the context-patch-based framework, we advance a thresholding-based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulate the case that the HR version of the input LR face is present in the training set, it thus iteratively enhances the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. In addition, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL.
doi_str_mv 10.1109/TCYB.2018.2868891
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2308297868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8493598</ieee_id><sourcerecordid>2122587718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d021f4839aa6a23431ae85267699f13bf9b11de83c26ab0f5a8296c5a28d06163</originalsourceid><addsrcrecordid>eNqNkU-L1EAQxYMo7rLuBxBBAl6EJWP_STrdRze4rjCgyHjwFCqditNLpntNd9D99lsh4wie7EsXxe89qupl2UvONpwz827XfL_eCMb1RmilteFPsnPBlS6EqKunp1rVZ9lljHeMnqaW0c-zM8mkLDVn51lsgk_4OxVfINl9fgMW81sYx9k6D8kFn19DxD6nYrefMO7D2Dv_I98GC6NLDwXpY5rAeYK-4j0h6NOqBL-2Qr-4kQZh8lS8yJ4NMEa8PP4X2bebD7vmtth-_vipeb8trDQyFT0TfCi1NAAKhCwlB9QVLaSMGbjsBtNx3qOWVijo2FCBFkbZCoTumeJKXmRvV18a4eeMMbUHFy2OI3gMc2wFF6LSdc01oW_-Qe_CPHmarhWSkW9NNyaKr5SdQowTDu395A4wPbSctUso7RJKu4TSHkMhzeuj89wdsD8p_kRAgF6BX9iFIVqH3uIJo9Qqzo0sl_xE3bj1tk2YfSLp1f9LiX610g7xL6VLIyuj5SOM8bD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308297868</pqid></control><display><type>article</type><title>Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Junjun ; Yu, Yi ; Tang, Suhua ; Ma, Jiayi ; Aizawa, Akiko ; Aizawa, Kiyoharu</creator><creatorcontrib>Jiang, Junjun ; Yu, Yi ; Tang, Suhua ; Ma, Jiayi ; Aizawa, Akiko ; Aizawa, Kiyoharu</creatorcontrib><description>Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of the image patch. In addition, when they are confronted with misalignment or the small sample size (SSS) problem, the hallucination performance is very poor. To this end, this paper incorporates the contextual information of the image patch and proposes a powerful and efficient context-patch-based face hallucination approach, namely, thresholding locality-constrained representation and reproducing learning (TLcR-RL). Under the context-patch-based framework, we advance a thresholding-based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulate the case that the HR version of the input LR face is present in the training set, it thus iteratively enhances the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. In addition, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2018.2868891</identifier><identifier>PMID: 30334810</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Automation &amp; Control Systems ; Computer Science ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics ; Computer simulation ; Context-patch ; Face ; face hallucination ; Hallucinations ; Image reconstruction ; Image resolution ; image super-resolution ; Indexes ; Informatics ; Machine learning ; Mathematical model ; Misalignment ; Performance enhancement ; position-patch ; Representations ; reproducing learning (RL) ; Science &amp; Technology ; Source code ; Technology ; Training</subject><ispartof>IEEE transactions on cybernetics, 2020-01, Vol.50 (1), p.324-337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000511934000027</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c393t-d021f4839aa6a23431ae85267699f13bf9b11de83c26ab0f5a8296c5a28d06163</citedby><cites>FETCH-LOGICAL-c393t-d021f4839aa6a23431ae85267699f13bf9b11de83c26ab0f5a8296c5a28d06163</cites><orcidid>0000-0003-3264-3265 ; 0000-0002-0294-6620 ; 0000-0003-2146-6275 ; 0000-0002-5694-505X ; 0000-0002-5784-8411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8493598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,28254,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8493598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30334810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Junjun</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Tang, Suhua</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><creatorcontrib>Aizawa, Akiko</creatorcontrib><creatorcontrib>Aizawa, Kiyoharu</creatorcontrib><title>Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE T CYBERNETICS</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of the image patch. In addition, when they are confronted with misalignment or the small sample size (SSS) problem, the hallucination performance is very poor. To this end, this paper incorporates the contextual information of the image patch and proposes a powerful and efficient context-patch-based face hallucination approach, namely, thresholding locality-constrained representation and reproducing learning (TLcR-RL). Under the context-patch-based framework, we advance a thresholding-based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulate the case that the HR version of the input LR face is present in the training set, it thus iteratively enhances the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. In addition, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL.</description><subject>Algorithms</subject><subject>Automation &amp; Control Systems</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Computer Science, Cybernetics</subject><subject>Computer simulation</subject><subject>Context-patch</subject><subject>Face</subject><subject>face hallucination</subject><subject>Hallucinations</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>image super-resolution</subject><subject>Indexes</subject><subject>Informatics</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Misalignment</subject><subject>Performance enhancement</subject><subject>position-patch</subject><subject>Representations</subject><subject>reproducing learning (RL)</subject><subject>Science &amp; Technology</subject><subject>Source code</subject><subject>Technology</subject><subject>Training</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><recordid>eNqNkU-L1EAQxYMo7rLuBxBBAl6EJWP_STrdRze4rjCgyHjwFCqditNLpntNd9D99lsh4wie7EsXxe89qupl2UvONpwz827XfL_eCMb1RmilteFPsnPBlS6EqKunp1rVZ9lljHeMnqaW0c-zM8mkLDVn51lsgk_4OxVfINl9fgMW81sYx9k6D8kFn19DxD6nYrefMO7D2Dv_I98GC6NLDwXpY5rAeYK-4j0h6NOqBL-2Qr-4kQZh8lS8yJ4NMEa8PP4X2bebD7vmtth-_vipeb8trDQyFT0TfCi1NAAKhCwlB9QVLaSMGbjsBtNx3qOWVijo2FCBFkbZCoTumeJKXmRvV18a4eeMMbUHFy2OI3gMc2wFF6LSdc01oW_-Qe_CPHmarhWSkW9NNyaKr5SdQowTDu395A4wPbSctUso7RJKu4TSHkMhzeuj89wdsD8p_kRAgF6BX9iFIVqH3uIJo9Qqzo0sl_xE3bj1tk2YfSLp1f9LiX610g7xL6VLIyuj5SOM8bD_</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Jiang, Junjun</creator><creator>Yu, Yi</creator><creator>Tang, Suhua</creator><creator>Ma, Jiayi</creator><creator>Aizawa, Akiko</creator><creator>Aizawa, Kiyoharu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid><orcidid>https://orcid.org/0000-0002-0294-6620</orcidid><orcidid>https://orcid.org/0000-0003-2146-6275</orcidid><orcidid>https://orcid.org/0000-0002-5694-505X</orcidid><orcidid>https://orcid.org/0000-0002-5784-8411</orcidid></search><sort><creationdate>20200101</creationdate><title>Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning</title><author>Jiang, Junjun ; Yu, Yi ; Tang, Suhua ; Ma, Jiayi ; Aizawa, Akiko ; Aizawa, Kiyoharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d021f4839aa6a23431ae85267699f13bf9b11de83c26ab0f5a8296c5a28d06163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation &amp; Control Systems</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Computer Science, Cybernetics</topic><topic>Computer simulation</topic><topic>Context-patch</topic><topic>Face</topic><topic>face hallucination</topic><topic>Hallucinations</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>image super-resolution</topic><topic>Indexes</topic><topic>Informatics</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Misalignment</topic><topic>Performance enhancement</topic><topic>position-patch</topic><topic>Representations</topic><topic>reproducing learning (RL)</topic><topic>Science &amp; Technology</topic><topic>Source code</topic><topic>Technology</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Junjun</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Tang, Suhua</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><creatorcontrib>Aizawa, Akiko</creatorcontrib><creatorcontrib>Aizawa, Kiyoharu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Junjun</au><au>Yu, Yi</au><au>Tang, Suhua</au><au>Ma, Jiayi</au><au>Aizawa, Akiko</au><au>Aizawa, Kiyoharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><stitle>IEEE T CYBERNETICS</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>50</volume><issue>1</issue><spage>324</spage><epage>337</epage><pages>324-337</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of the image patch. In addition, when they are confronted with misalignment or the small sample size (SSS) problem, the hallucination performance is very poor. To this end, this paper incorporates the contextual information of the image patch and proposes a powerful and efficient context-patch-based face hallucination approach, namely, thresholding locality-constrained representation and reproducing learning (TLcR-RL). Under the context-patch-based framework, we advance a thresholding-based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulate the case that the HR version of the input LR face is present in the training set, it thus iteratively enhances the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. In addition, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>30334810</pmid><doi>10.1109/TCYB.2018.2868891</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid><orcidid>https://orcid.org/0000-0002-0294-6620</orcidid><orcidid>https://orcid.org/0000-0003-2146-6275</orcidid><orcidid>https://orcid.org/0000-0002-5694-505X</orcidid><orcidid>https://orcid.org/0000-0002-5784-8411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2020-01, Vol.50 (1), p.324-337
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2308297868
source IEEE Electronic Library (IEL)
subjects Algorithms
Automation & Control Systems
Computer Science
Computer Science, Artificial Intelligence
Computer Science, Cybernetics
Computer simulation
Context-patch
Face
face hallucination
Hallucinations
Image reconstruction
Image resolution
image super-resolution
Indexes
Informatics
Machine learning
Mathematical model
Misalignment
Performance enhancement
position-patch
Representations
reproducing learning (RL)
Science & Technology
Source code
Technology
Training
title Context-Patch Face Hallucination Based on Thresholding Locality-Constrained Representation and Reproducing Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-Patch%20Face%20Hallucination%20Based%20on%20Thresholding%20Locality-Constrained%20Representation%20and%20Reproducing%20Learning&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Jiang,%20Junjun&rft.date=2020-01-01&rft.volume=50&rft.issue=1&rft.spage=324&rft.epage=337&rft.pages=324-337&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2018.2868891&rft_dat=%3Cproquest_RIE%3E2122587718%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308297868&rft_id=info:pmid/30334810&rft_ieee_id=8493598&rfr_iscdi=true