A column generation approach to multiscale capacity planning for power-intensive process networks
Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2019-12, Vol.20 (4), p.1001-1027 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 4 |
container_start_page | 1001 |
container_title | Optimization and engineering |
container_volume | 20 |
creator | Flores-Quiroz, Angela Pinto, Jose M. Zhang, Qi |
description | Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101,
2014a
) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant. |
doi_str_mv | 10.1007/s11081-019-09435-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308220351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308220351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAkyWmA0-viTxWFXcpEosMFuO45SU1A62Q8XbYwgSG9M5w_-dy1cUl0CugZDqJgKQGjABiYnkTGB-VCxAVAxTSflx7lktMeeUnBZnMe4IgVLQelHoFTJ-mPYOba2zQafeO6THMXhtXlHyaD8NqY9GDxYZPWrTp080Dtq53m1R5wMa_cEG3LtkXew_LMqosTEiZ9PBh7d4Xpx0eoj24rcui5e72-f1A9483T-uVxtsWFkl3MqmAdAgBNSyNMzwipWysZ2hbcdpZWVDeClKA7SWopKiaUmjGXTQGk3yp8viap6bD3ifbExq56fg8kpFGakpJUxATtE5ZYKPMdhOjaHf6_CpgKhvlWpWqbJK9aNS8QyxGYo57LY2_I3-h_oCRyV4Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308220351</pqid></control><display><type>article</type><title>A column generation approach to multiscale capacity planning for power-intensive process networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Flores-Quiroz, Angela ; Pinto, Jose M. ; Zhang, Qi</creator><creatorcontrib>Flores-Quiroz, Angela ; Pinto, Jose M. ; Zhang, Qi</creatorcontrib><description>Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101,
2014a
) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-019-09435-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Air separation ; Algorithms ; Control ; Electricity pricing ; Engineering ; Environmental Management ; Financial Engineering ; Industrial plants ; Integers ; Linear programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Production scheduling ; Research Article ; Systems Theory ; Volatility</subject><ispartof>Optimization and engineering, 2019-12, Vol.20 (4), p.1001-1027</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</citedby><cites>FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-019-09435-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-019-09435-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Flores-Quiroz, Angela</creatorcontrib><creatorcontrib>Pinto, Jose M.</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><title>A column generation approach to multiscale capacity planning for power-intensive process networks</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101,
2014a
) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.</description><subject>Air separation</subject><subject>Algorithms</subject><subject>Control</subject><subject>Electricity pricing</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Industrial plants</subject><subject>Integers</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Research Article</subject><subject>Systems Theory</subject><subject>Volatility</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhiMEEqXwAkyWmA0-viTxWFXcpEosMFuO45SU1A62Q8XbYwgSG9M5w_-dy1cUl0CugZDqJgKQGjABiYnkTGB-VCxAVAxTSflx7lktMeeUnBZnMe4IgVLQelHoFTJ-mPYOba2zQafeO6THMXhtXlHyaD8NqY9GDxYZPWrTp080Dtq53m1R5wMa_cEG3LtkXew_LMqosTEiZ9PBh7d4Xpx0eoj24rcui5e72-f1A9483T-uVxtsWFkl3MqmAdAgBNSyNMzwipWysZ2hbcdpZWVDeClKA7SWopKiaUmjGXTQGk3yp8viap6bD3ifbExq56fg8kpFGakpJUxATtE5ZYKPMdhOjaHf6_CpgKhvlWpWqbJK9aNS8QyxGYo57LY2_I3-h_oCRyV4Hw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Flores-Quiroz, Angela</creator><creator>Pinto, Jose M.</creator><creator>Zhang, Qi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20191201</creationdate><title>A column generation approach to multiscale capacity planning for power-intensive process networks</title><author>Flores-Quiroz, Angela ; Pinto, Jose M. ; Zhang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air separation</topic><topic>Algorithms</topic><topic>Control</topic><topic>Electricity pricing</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Industrial plants</topic><topic>Integers</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Research Article</topic><topic>Systems Theory</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Quiroz, Angela</creatorcontrib><creatorcontrib>Pinto, Jose M.</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Quiroz, Angela</au><au>Pinto, Jose M.</au><au>Zhang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A column generation approach to multiscale capacity planning for power-intensive process networks</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>1001</spage><epage>1027</epage><pages>1001-1027</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101,
2014a
) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-019-09435-4</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2019-12, Vol.20 (4), p.1001-1027 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_journals_2308220351 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air separation Algorithms Control Electricity pricing Engineering Environmental Management Financial Engineering Industrial plants Integers Linear programming Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Production scheduling Research Article Systems Theory Volatility |
title | A column generation approach to multiscale capacity planning for power-intensive process networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20column%20generation%20approach%20to%20multiscale%20capacity%20planning%20for%20power-intensive%20process%20networks&rft.jtitle=Optimization%20and%20engineering&rft.au=Flores-Quiroz,%20Angela&rft.date=2019-12-01&rft.volume=20&rft.issue=4&rft.spage=1001&rft.epage=1027&rft.pages=1001-1027&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-019-09435-4&rft_dat=%3Cproquest_cross%3E2308220351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308220351&rft_id=info:pmid/&rfr_iscdi=true |