A column generation approach to multiscale capacity planning for power-intensive process networks

Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2019-12, Vol.20 (4), p.1001-1027
Hauptverfasser: Flores-Quiroz, Angela, Pinto, Jose M., Zhang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1027
container_issue 4
container_start_page 1001
container_title Optimization and engineering
container_volume 20
creator Flores-Quiroz, Angela
Pinto, Jose M.
Zhang, Qi
description Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101, 2014a ) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.
doi_str_mv 10.1007/s11081-019-09435-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308220351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308220351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhiMEEqXwAkyWmA0-viTxWFXcpEosMFuO45SU1A62Q8XbYwgSG9M5w_-dy1cUl0CugZDqJgKQGjABiYnkTGB-VCxAVAxTSflx7lktMeeUnBZnMe4IgVLQelHoFTJ-mPYOba2zQafeO6THMXhtXlHyaD8NqY9GDxYZPWrTp080Dtq53m1R5wMa_cEG3LtkXew_LMqosTEiZ9PBh7d4Xpx0eoj24rcui5e72-f1A9483T-uVxtsWFkl3MqmAdAgBNSyNMzwipWysZ2hbcdpZWVDeClKA7SWopKiaUmjGXTQGk3yp8viap6bD3ifbExq56fg8kpFGakpJUxATtE5ZYKPMdhOjaHf6_CpgKhvlWpWqbJK9aNS8QyxGYo57LY2_I3-h_oCRyV4Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308220351</pqid></control><display><type>article</type><title>A column generation approach to multiscale capacity planning for power-intensive process networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Flores-Quiroz, Angela ; Pinto, Jose M. ; Zhang, Qi</creator><creatorcontrib>Flores-Quiroz, Angela ; Pinto, Jose M. ; Zhang, Qi</creatorcontrib><description>Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101, 2014a ) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-019-09435-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Air separation ; Algorithms ; Control ; Electricity pricing ; Engineering ; Environmental Management ; Financial Engineering ; Industrial plants ; Integers ; Linear programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Production scheduling ; Research Article ; Systems Theory ; Volatility</subject><ispartof>Optimization and engineering, 2019-12, Vol.20 (4), p.1001-1027</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</citedby><cites>FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-019-09435-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-019-09435-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Flores-Quiroz, Angela</creatorcontrib><creatorcontrib>Pinto, Jose M.</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><title>A column generation approach to multiscale capacity planning for power-intensive process networks</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101, 2014a ) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.</description><subject>Air separation</subject><subject>Algorithms</subject><subject>Control</subject><subject>Electricity pricing</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Industrial plants</subject><subject>Integers</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Research Article</subject><subject>Systems Theory</subject><subject>Volatility</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhiMEEqXwAkyWmA0-viTxWFXcpEosMFuO45SU1A62Q8XbYwgSG9M5w_-dy1cUl0CugZDqJgKQGjABiYnkTGB-VCxAVAxTSflx7lktMeeUnBZnMe4IgVLQelHoFTJ-mPYOba2zQafeO6THMXhtXlHyaD8NqY9GDxYZPWrTp080Dtq53m1R5wMa_cEG3LtkXew_LMqosTEiZ9PBh7d4Xpx0eoj24rcui5e72-f1A9483T-uVxtsWFkl3MqmAdAgBNSyNMzwipWysZ2hbcdpZWVDeClKA7SWopKiaUmjGXTQGk3yp8viap6bD3ifbExq56fg8kpFGakpJUxATtE5ZYKPMdhOjaHf6_CpgKhvlWpWqbJK9aNS8QyxGYo57LY2_I3-h_oCRyV4Hw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Flores-Quiroz, Angela</creator><creator>Pinto, Jose M.</creator><creator>Zhang, Qi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20191201</creationdate><title>A column generation approach to multiscale capacity planning for power-intensive process networks</title><author>Flores-Quiroz, Angela ; Pinto, Jose M. ; Zhang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d9bb11a1551896c3c47369befc2df427e9b04656c12895795bd0ba31f1dca0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air separation</topic><topic>Algorithms</topic><topic>Control</topic><topic>Electricity pricing</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Industrial plants</topic><topic>Integers</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Research Article</topic><topic>Systems Theory</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Quiroz, Angela</creatorcontrib><creatorcontrib>Pinto, Jose M.</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Quiroz, Angela</au><au>Pinto, Jose M.</au><au>Zhang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A column generation approach to multiscale capacity planning for power-intensive process networks</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>1001</spage><epage>1027</epage><pages>1001-1027</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89–101, 2014a ) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-019-09435-4</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2019-12, Vol.20 (4), p.1001-1027
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2308220351
source SpringerLink Journals - AutoHoldings
subjects Air separation
Algorithms
Control
Electricity pricing
Engineering
Environmental Management
Financial Engineering
Industrial plants
Integers
Linear programming
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Production scheduling
Research Article
Systems Theory
Volatility
title A column generation approach to multiscale capacity planning for power-intensive process networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20column%20generation%20approach%20to%20multiscale%20capacity%20planning%20for%20power-intensive%20process%20networks&rft.jtitle=Optimization%20and%20engineering&rft.au=Flores-Quiroz,%20Angela&rft.date=2019-12-01&rft.volume=20&rft.issue=4&rft.spage=1001&rft.epage=1027&rft.pages=1001-1027&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-019-09435-4&rft_dat=%3Cproquest_cross%3E2308220351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308220351&rft_id=info:pmid/&rfr_iscdi=true