Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory

In the paper, inelastic strain localization in homogeneous specimens and mesovolumes of a polycrystalline material is modeled based on the asymmetric theory of an elastoplastic Cosserat continuum in a two-dimensional formulation for plane strain. It is assumed that rotational deformation in loaded m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical mesomechanics 2019-09, Vol.22 (5), p.392-401
Hauptverfasser: Makarov, P. V., Bakeev, R. A., Smolin, I. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 5
container_start_page 392
container_title Physical mesomechanics
container_volume 22
creator Makarov, P. V.
Bakeev, R. A.
Smolin, I. Yu
description In the paper, inelastic strain localization in homogeneous specimens and mesovolumes of a polycrystalline material is modeled based on the asymmetric theory of an elastoplastic Cosserat continuum in a two-dimensional formulation for plane strain. It is assumed that rotational deformation in loaded materials occurs due to the development of localized plastic deformation as well as bending and torsion of the material lattice at the micro- and nanoscale levels. For this reason, the parameters of the micropolar model are considered as functions of inelastic strain for each local mesovolume of the continuum. It is shown that the observed parabolic hardening can be attributed to a large extent to the development of rotational deformation modes, bending and torsion, and appearance of couple stresses in the loaded material. The modeling results indicate that if rotational deformation is stopped in the loaded material, its accommodation capacity decreases, the local and macroscopic inelastic strains sharply increase, leading to a much more rapid formation of fracture structures. Conversely, the formation of meso- and nanoscale substructures with high lattice curvature in materials promotes the activation of rotational deformation modes, reduction of localized strains, and relaxation of stress concentrators.
doi_str_mv 10.1134/S1029959919050060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308220338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308220338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3f3ab9c4b7d99d4d79db92a16d8a6ab35927b960f977c15cb816f5d4a32a09223</originalsourceid><addsrcrecordid>eNp1kc1OwzAQhCMEElXpA3CzxDngn_ztsSoUKrXiQDlHjrNpU5K42A5VeRYeFrdF4oDwxdbONzOWNgiuGb1lTER3L4xygBiAAY0pTehZMGAANIwjHp37t5fDg34ZjKzdUH8Eh4jCIPha6BKbulsRXZG5VrKpP7Eksw4baV2tyD1W2rTS1boj0hG3RrJAq60nkexqtyZjpXTfOeK5o3xMIXPpvB3JpDcf0vUGSd0d5amRLe60eTs0HgZju29bdMaXTbS1aHzNco3a7K-Ci0o2Fkc_9zB4nT4sJ0_h_PlxNhnPQyVY4kJRCVmAioq0BCijMoWyAC5ZUmYykYWIgacFJLSCNFUsVkXGkiouIym4pMC5GAY3p9yt0e89WpdvdG86X5lzQTPOqRCZp9iJUsZ_02CVb03dSrPPGc0Pe8j_7MF7-MljPdut0Pwm_2_6BkEhi38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308220338</pqid></control><display><type>article</type><title>Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory</title><source>Springer Nature - Complete Springer Journals</source><creator>Makarov, P. V. ; Bakeev, R. A. ; Smolin, I. Yu</creator><creatorcontrib>Makarov, P. V. ; Bakeev, R. A. ; Smolin, I. Yu</creatorcontrib><description>In the paper, inelastic strain localization in homogeneous specimens and mesovolumes of a polycrystalline material is modeled based on the asymmetric theory of an elastoplastic Cosserat continuum in a two-dimensional formulation for plane strain. It is assumed that rotational deformation in loaded materials occurs due to the development of localized plastic deformation as well as bending and torsion of the material lattice at the micro- and nanoscale levels. For this reason, the parameters of the micropolar model are considered as functions of inelastic strain for each local mesovolume of the continuum. It is shown that the observed parabolic hardening can be attributed to a large extent to the development of rotational deformation modes, bending and torsion, and appearance of couple stresses in the loaded material. The modeling results indicate that if rotational deformation is stopped in the loaded material, its accommodation capacity decreases, the local and macroscopic inelastic strains sharply increase, leading to a much more rapid formation of fracture structures. Conversely, the formation of meso- and nanoscale substructures with high lattice curvature in materials promotes the activation of rotational deformation modes, reduction of localized strains, and relaxation of stress concentrators.</description><identifier>ISSN: 1029-9599</identifier><identifier>EISSN: 1990-5424</identifier><identifier>DOI: 10.1134/S1029959919050060</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymmetry ; Bending ; Classical Mechanics ; Concentrators ; Curvature ; Elastoplasticity ; Lattice vibration ; Materials Science ; Modelling ; Physics ; Physics and Astronomy ; Plane strain ; Plastic deformation ; Solid State Physics ; Strain localization ; Stress relaxation ; Substructures ; Torsion</subject><ispartof>Physical mesomechanics, 2019-09, Vol.22 (5), p.392-401</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3f3ab9c4b7d99d4d79db92a16d8a6ab35927b960f977c15cb816f5d4a32a09223</citedby><cites>FETCH-LOGICAL-c316t-3f3ab9c4b7d99d4d79db92a16d8a6ab35927b960f977c15cb816f5d4a32a09223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1029959919050060$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1029959919050060$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Makarov, P. V.</creatorcontrib><creatorcontrib>Bakeev, R. A.</creatorcontrib><creatorcontrib>Smolin, I. Yu</creatorcontrib><title>Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory</title><title>Physical mesomechanics</title><addtitle>Phys Mesomech</addtitle><description>In the paper, inelastic strain localization in homogeneous specimens and mesovolumes of a polycrystalline material is modeled based on the asymmetric theory of an elastoplastic Cosserat continuum in a two-dimensional formulation for plane strain. It is assumed that rotational deformation in loaded materials occurs due to the development of localized plastic deformation as well as bending and torsion of the material lattice at the micro- and nanoscale levels. For this reason, the parameters of the micropolar model are considered as functions of inelastic strain for each local mesovolume of the continuum. It is shown that the observed parabolic hardening can be attributed to a large extent to the development of rotational deformation modes, bending and torsion, and appearance of couple stresses in the loaded material. The modeling results indicate that if rotational deformation is stopped in the loaded material, its accommodation capacity decreases, the local and macroscopic inelastic strains sharply increase, leading to a much more rapid formation of fracture structures. Conversely, the formation of meso- and nanoscale substructures with high lattice curvature in materials promotes the activation of rotational deformation modes, reduction of localized strains, and relaxation of stress concentrators.</description><subject>Asymmetry</subject><subject>Bending</subject><subject>Classical Mechanics</subject><subject>Concentrators</subject><subject>Curvature</subject><subject>Elastoplasticity</subject><subject>Lattice vibration</subject><subject>Materials Science</subject><subject>Modelling</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plane strain</subject><subject>Plastic deformation</subject><subject>Solid State Physics</subject><subject>Strain localization</subject><subject>Stress relaxation</subject><subject>Substructures</subject><subject>Torsion</subject><issn>1029-9599</issn><issn>1990-5424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1OwzAQhCMEElXpA3CzxDngn_ztsSoUKrXiQDlHjrNpU5K42A5VeRYeFrdF4oDwxdbONzOWNgiuGb1lTER3L4xygBiAAY0pTehZMGAANIwjHp37t5fDg34ZjKzdUH8Eh4jCIPha6BKbulsRXZG5VrKpP7Eksw4baV2tyD1W2rTS1boj0hG3RrJAq60nkexqtyZjpXTfOeK5o3xMIXPpvB3JpDcf0vUGSd0d5amRLe60eTs0HgZju29bdMaXTbS1aHzNco3a7K-Ci0o2Fkc_9zB4nT4sJ0_h_PlxNhnPQyVY4kJRCVmAioq0BCijMoWyAC5ZUmYykYWIgacFJLSCNFUsVkXGkiouIym4pMC5GAY3p9yt0e89WpdvdG86X5lzQTPOqRCZp9iJUsZ_02CVb03dSrPPGc0Pe8j_7MF7-MljPdut0Pwm_2_6BkEhi38</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Makarov, P. V.</creator><creator>Bakeev, R. A.</creator><creator>Smolin, I. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory</title><author>Makarov, P. V. ; Bakeev, R. A. ; Smolin, I. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3f3ab9c4b7d99d4d79db92a16d8a6ab35927b960f977c15cb816f5d4a32a09223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymmetry</topic><topic>Bending</topic><topic>Classical Mechanics</topic><topic>Concentrators</topic><topic>Curvature</topic><topic>Elastoplasticity</topic><topic>Lattice vibration</topic><topic>Materials Science</topic><topic>Modelling</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plane strain</topic><topic>Plastic deformation</topic><topic>Solid State Physics</topic><topic>Strain localization</topic><topic>Stress relaxation</topic><topic>Substructures</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarov, P. V.</creatorcontrib><creatorcontrib>Bakeev, R. A.</creatorcontrib><creatorcontrib>Smolin, I. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Physical mesomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarov, P. V.</au><au>Bakeev, R. A.</au><au>Smolin, I. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory</atitle><jtitle>Physical mesomechanics</jtitle><stitle>Phys Mesomech</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>22</volume><issue>5</issue><spage>392</spage><epage>401</epage><pages>392-401</pages><issn>1029-9599</issn><eissn>1990-5424</eissn><abstract>In the paper, inelastic strain localization in homogeneous specimens and mesovolumes of a polycrystalline material is modeled based on the asymmetric theory of an elastoplastic Cosserat continuum in a two-dimensional formulation for plane strain. It is assumed that rotational deformation in loaded materials occurs due to the development of localized plastic deformation as well as bending and torsion of the material lattice at the micro- and nanoscale levels. For this reason, the parameters of the micropolar model are considered as functions of inelastic strain for each local mesovolume of the continuum. It is shown that the observed parabolic hardening can be attributed to a large extent to the development of rotational deformation modes, bending and torsion, and appearance of couple stresses in the loaded material. The modeling results indicate that if rotational deformation is stopped in the loaded material, its accommodation capacity decreases, the local and macroscopic inelastic strains sharply increase, leading to a much more rapid formation of fracture structures. Conversely, the formation of meso- and nanoscale substructures with high lattice curvature in materials promotes the activation of rotational deformation modes, reduction of localized strains, and relaxation of stress concentrators.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1029959919050060</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1029-9599
ispartof Physical mesomechanics, 2019-09, Vol.22 (5), p.392-401
issn 1029-9599
1990-5424
language eng
recordid cdi_proquest_journals_2308220338
source Springer Nature - Complete Springer Journals
subjects Asymmetry
Bending
Classical Mechanics
Concentrators
Curvature
Elastoplasticity
Lattice vibration
Materials Science
Modelling
Physics
Physics and Astronomy
Plane strain
Plastic deformation
Solid State Physics
Strain localization
Stress relaxation
Substructures
Torsion
title Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Localized%20Inelastic%20Deformation%20at%20the%20Mesoscale%20with%20Account%20for%20the%20Local%20Lattice%20Curvature%20in%20the%20Framework%20of%20the%20Asymmetric%20Cosserat%20Theory&rft.jtitle=Physical%20mesomechanics&rft.au=Makarov,%20P.%20V.&rft.date=2019-09-01&rft.volume=22&rft.issue=5&rft.spage=392&rft.epage=401&rft.pages=392-401&rft.issn=1029-9599&rft.eissn=1990-5424&rft_id=info:doi/10.1134/S1029959919050060&rft_dat=%3Cproquest_cross%3E2308220338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308220338&rft_id=info:pmid/&rfr_iscdi=true