x-Coordinates of Pell equations which are Tribonacci numbers II
For an integer d ≥ 2 which is not a square, we show that there is at most one value of the positive integer x participating in the Pell equation x 2 - d y 2 = ± 4 which is a Tribonacci number, with a few exceptions that we completely characterize.
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2019-12, Vol.79 (2), p.157-167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Periodica mathematica Hungarica |
container_volume | 79 |
creator | Kafle, Bir Luca, Florian Togbé, Alain |
description | For an integer
d
≥
2
which is not a square, we show that there is at most one value of the positive integer
x
participating in the Pell equation
x
2
-
d
y
2
=
±
4
which is a Tribonacci number, with a few exceptions that we completely characterize. |
doi_str_mv | 10.1007/s10998-018-0264-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308219372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308219372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-64c53374b8bcfe3599a2849119a264a0aba4c12fce9e6d88b4efa4990d5b162e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4C7gOvpekpkmK5GitVDQRV2HTJqxU9pJm8xg_XtTRnDl4nE399wHh5BbhHsEmDwkBK0VA8zHS8mOZ2SEhVKMK67PyQhAICsEiEtyldIGIFMCRuTxyKYhxFXT2s4nGmr67rdb6g-97ZrQJvq1btya2ujpMjZVaK1zDW37XeVjovP5Nbmo7Tb5m98ck4-X5-X0lS3eZvPp04I5gWXHSukKISayUpWrvSi0tlxJjZizlBZsZaVDXjuvfblSqpK-tlJrWBUVltyLMbkbdvcxHHqfOrMJfWzzS8MFKI5aTHhu4dByMaQUfW32sdnZ-G0QzMmTGTyZ7MmcPJljZvjApNxtP338W_4f-gEermp6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308219372</pqid></control><display><type>article</type><title>x-Coordinates of Pell equations which are Tribonacci numbers II</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kafle, Bir ; Luca, Florian ; Togbé, Alain</creator><creatorcontrib>Kafle, Bir ; Luca, Florian ; Togbé, Alain</creatorcontrib><description>For an integer
d
≥
2
which is not a square, we show that there is at most one value of the positive integer
x
participating in the Pell equation
x
2
-
d
y
2
=
±
4
which is a Tribonacci number, with a few exceptions that we completely characterize.</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-018-0264-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Integers ; Mathematics ; Mathematics and Statistics ; Numbers</subject><ispartof>Periodica mathematica Hungarica, 2019-12, Vol.79 (2), p.157-167</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-64c53374b8bcfe3599a2849119a264a0aba4c12fce9e6d88b4efa4990d5b162e3</citedby><cites>FETCH-LOGICAL-c316t-64c53374b8bcfe3599a2849119a264a0aba4c12fce9e6d88b4efa4990d5b162e3</cites><orcidid>0000-0002-5882-936X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10998-018-0264-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10998-018-0264-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kafle, Bir</creatorcontrib><creatorcontrib>Luca, Florian</creatorcontrib><creatorcontrib>Togbé, Alain</creatorcontrib><title>x-Coordinates of Pell equations which are Tribonacci numbers II</title><title>Periodica mathematica Hungarica</title><addtitle>Period Math Hung</addtitle><description>For an integer
d
≥
2
which is not a square, we show that there is at most one value of the positive integer
x
participating in the Pell equation
x
2
-
d
y
2
=
±
4
which is a Tribonacci number, with a few exceptions that we completely characterize.</description><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numbers</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsf4C7gOvpekpkmK5GitVDQRV2HTJqxU9pJm8xg_XtTRnDl4nE399wHh5BbhHsEmDwkBK0VA8zHS8mOZ2SEhVKMK67PyQhAICsEiEtyldIGIFMCRuTxyKYhxFXT2s4nGmr67rdb6g-97ZrQJvq1btya2ujpMjZVaK1zDW37XeVjovP5Nbmo7Tb5m98ck4-X5-X0lS3eZvPp04I5gWXHSukKISayUpWrvSi0tlxJjZizlBZsZaVDXjuvfblSqpK-tlJrWBUVltyLMbkbdvcxHHqfOrMJfWzzS8MFKI5aTHhu4dByMaQUfW32sdnZ-G0QzMmTGTyZ7MmcPJljZvjApNxtP338W_4f-gEermp6</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kafle, Bir</creator><creator>Luca, Florian</creator><creator>Togbé, Alain</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5882-936X</orcidid></search><sort><creationdate>20191201</creationdate><title>x-Coordinates of Pell equations which are Tribonacci numbers II</title><author>Kafle, Bir ; Luca, Florian ; Togbé, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-64c53374b8bcfe3599a2849119a264a0aba4c12fce9e6d88b4efa4990d5b162e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kafle, Bir</creatorcontrib><creatorcontrib>Luca, Florian</creatorcontrib><creatorcontrib>Togbé, Alain</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kafle, Bir</au><au>Luca, Florian</au><au>Togbé, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>x-Coordinates of Pell equations which are Tribonacci numbers II</atitle><jtitle>Periodica mathematica Hungarica</jtitle><stitle>Period Math Hung</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>79</volume><issue>2</issue><spage>157</spage><epage>167</epage><pages>157-167</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>For an integer
d
≥
2
which is not a square, we show that there is at most one value of the positive integer
x
participating in the Pell equation
x
2
-
d
y
2
=
±
4
which is a Tribonacci number, with a few exceptions that we completely characterize.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10998-018-0264-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5882-936X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-5303 |
ispartof | Periodica mathematica Hungarica, 2019-12, Vol.79 (2), p.157-167 |
issn | 0031-5303 1588-2829 |
language | eng |
recordid | cdi_proquest_journals_2308219372 |
source | SpringerLink Journals - AutoHoldings |
subjects | Integers Mathematics Mathematics and Statistics Numbers |
title | x-Coordinates of Pell equations which are Tribonacci numbers II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=x-Coordinates%20of%20Pell%20equations%20which%20are%20Tribonacci%20numbers%20II&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=Kafle,%20Bir&rft.date=2019-12-01&rft.volume=79&rft.issue=2&rft.spage=157&rft.epage=167&rft.pages=157-167&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-018-0264-x&rft_dat=%3Cproquest_cross%3E2308219372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308219372&rft_id=info:pmid/&rfr_iscdi=true |