Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites
Carbon aerogel (CAG) is a potential hierarchical reinforcement to improve the matrix-dominated mechanical properties of continuous carbon fibre reinforced polymer (CFRP) composites in both multifunctional and purely structural applications. When using CAG to reinforce a polyethylene glycol diglycidy...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2019-09, Vol.182, p.107720, Article 107720 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107720 |
container_title | Composites science and technology |
container_volume | 182 |
creator | Nguyen, Sang Anthony, David B. Qian, Hui Yue, Chuntong Singh, Aryaman Bismarck, Alexander Shaffer, Milo S.P. Greenhalgh, Emile S. |
description | Carbon aerogel (CAG) is a potential hierarchical reinforcement to improve the matrix-dominated mechanical properties of continuous carbon fibre reinforced polymer (CFRP) composites in both multifunctional and purely structural applications. When using CAG to reinforce a polyethylene glycol diglycidyl ether (PEGDGE) matrix, the interlaminar shear strength, compressive modulus and strength increased approximately four-fold, whilst the out-of-plane electrical conductivity increased by 118%. These mechanical and electrical performance enhancements significantly improve the multifunctional efficiency of composite structural supercapacitors, which can offer weight savings in transport and other applications. However, CAG also has the potential to reinforce conventional continuous CF composites in purely structural contexts. Here, CAG reinforcement of structural epoxy resin composites marginally increased compressive (1.4%) and tensile (2.7%) moduli respectively, but considerably reduced compressive, tensile and interlaminar shear strengths. Fractographic analysis shows that the reduced performance can be attributed to poor interfacial adhesion; in the future, alternative processing routes may resolve these issues to achieve advances in both moduli and strengths over conventional structural CFRPs. |
doi_str_mv | 10.1016/j.compscitech.2019.107720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2308018431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353819307596</els_id><sourcerecordid>2308018431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-e059bec1baa670f2f5ab2288d4069bd9571dd21b95521dbc6fa4b3a17bc7e173</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0GsU2wnjuMlqnhJRWy6t_wYE0dtHOwUqX-P24LEkpU1nnvvzByEbgleEEya-35hwnZMxk9gugXFROR_zik-QzPSclESzPA5mmHaNGXFqvYSXaXUY4w5E3SG4C371OCN2hRqsMXY7dOxGCG6ELdqMFAEVxgVdRgKBTF8wKaI4IfcNmB_O87rCEXnIapoumPEYbOQ8mbpGl04tUlw8_PO0frpcb18KVfvz6_Lh1Vp6opPJWAmNBiilWo4dtQxpSltW1vjRmgrGCfWUqIFY5RYbRqnal0pwrXhQHg1R3en2DGGzx2kSfZhF4c8UdIKt5i0dUWySpxUJoaUIjg5Rr9VcS8Jlgeospd_oMoDVHmCmr3LkxfyFV_5WJlVkBlZH8FM0gb_j5RvrDCIXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308018431</pqid></control><display><type>article</type><title>Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nguyen, Sang ; Anthony, David B. ; Qian, Hui ; Yue, Chuntong ; Singh, Aryaman ; Bismarck, Alexander ; Shaffer, Milo S.P. ; Greenhalgh, Emile S.</creator><creatorcontrib>Nguyen, Sang ; Anthony, David B. ; Qian, Hui ; Yue, Chuntong ; Singh, Aryaman ; Bismarck, Alexander ; Shaffer, Milo S.P. ; Greenhalgh, Emile S.</creatorcontrib><description>Carbon aerogel (CAG) is a potential hierarchical reinforcement to improve the matrix-dominated mechanical properties of continuous carbon fibre reinforced polymer (CFRP) composites in both multifunctional and purely structural applications. When using CAG to reinforce a polyethylene glycol diglycidyl ether (PEGDGE) matrix, the interlaminar shear strength, compressive modulus and strength increased approximately four-fold, whilst the out-of-plane electrical conductivity increased by 118%. These mechanical and electrical performance enhancements significantly improve the multifunctional efficiency of composite structural supercapacitors, which can offer weight savings in transport and other applications. However, CAG also has the potential to reinforce conventional continuous CF composites in purely structural contexts. Here, CAG reinforcement of structural epoxy resin composites marginally increased compressive (1.4%) and tensile (2.7%) moduli respectively, but considerably reduced compressive, tensile and interlaminar shear strengths. Fractographic analysis shows that the reduced performance can be attributed to poor interfacial adhesion; in the future, alternative processing routes may resolve these issues to achieve advances in both moduli and strengths over conventional structural CFRPs.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.107720</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Aerogels ; Carbon aerogel composites ; Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Compressive strength ; Continuous fiber composites ; Electrical resistivity ; Epoxy resins ; Fiber composites ; Fiber reinforced polymers ; Fractography ; Interfacial shear strength ; Mechanical properties ; Modulus of elasticity ; Polyethylene glycol ; Polymer matrix composites ; Polymers ; Tensile strength ; Weight reduction</subject><ispartof>Composites science and technology, 2019-09, Vol.182, p.107720, Article 107720</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 29, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-e059bec1baa670f2f5ab2288d4069bd9571dd21b95521dbc6fa4b3a17bc7e173</citedby><cites>FETCH-LOGICAL-c437t-e059bec1baa670f2f5ab2288d4069bd9571dd21b95521dbc6fa4b3a17bc7e173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2019.107720$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nguyen, Sang</creatorcontrib><creatorcontrib>Anthony, David B.</creatorcontrib><creatorcontrib>Qian, Hui</creatorcontrib><creatorcontrib>Yue, Chuntong</creatorcontrib><creatorcontrib>Singh, Aryaman</creatorcontrib><creatorcontrib>Bismarck, Alexander</creatorcontrib><creatorcontrib>Shaffer, Milo S.P.</creatorcontrib><creatorcontrib>Greenhalgh, Emile S.</creatorcontrib><title>Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites</title><title>Composites science and technology</title><description>Carbon aerogel (CAG) is a potential hierarchical reinforcement to improve the matrix-dominated mechanical properties of continuous carbon fibre reinforced polymer (CFRP) composites in both multifunctional and purely structural applications. When using CAG to reinforce a polyethylene glycol diglycidyl ether (PEGDGE) matrix, the interlaminar shear strength, compressive modulus and strength increased approximately four-fold, whilst the out-of-plane electrical conductivity increased by 118%. These mechanical and electrical performance enhancements significantly improve the multifunctional efficiency of composite structural supercapacitors, which can offer weight savings in transport and other applications. However, CAG also has the potential to reinforce conventional continuous CF composites in purely structural contexts. Here, CAG reinforcement of structural epoxy resin composites marginally increased compressive (1.4%) and tensile (2.7%) moduli respectively, but considerably reduced compressive, tensile and interlaminar shear strengths. Fractographic analysis shows that the reduced performance can be attributed to poor interfacial adhesion; in the future, alternative processing routes may resolve these issues to achieve advances in both moduli and strengths over conventional structural CFRPs.</description><subject>Aerogels</subject><subject>Carbon aerogel composites</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Continuous fiber composites</subject><subject>Electrical resistivity</subject><subject>Epoxy resins</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fractography</subject><subject>Interfacial shear strength</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polyethylene glycol</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Tensile strength</subject><subject>Weight reduction</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0GsU2wnjuMlqnhJRWy6t_wYE0dtHOwUqX-P24LEkpU1nnvvzByEbgleEEya-35hwnZMxk9gugXFROR_zik-QzPSclESzPA5mmHaNGXFqvYSXaXUY4w5E3SG4C371OCN2hRqsMXY7dOxGCG6ELdqMFAEVxgVdRgKBTF8wKaI4IfcNmB_O87rCEXnIapoumPEYbOQ8mbpGl04tUlw8_PO0frpcb18KVfvz6_Lh1Vp6opPJWAmNBiilWo4dtQxpSltW1vjRmgrGCfWUqIFY5RYbRqnal0pwrXhQHg1R3en2DGGzx2kSfZhF4c8UdIKt5i0dUWySpxUJoaUIjg5Rr9VcS8Jlgeospd_oMoDVHmCmr3LkxfyFV_5WJlVkBlZH8FM0gb_j5RvrDCIXg</recordid><startdate>20190929</startdate><enddate>20190929</enddate><creator>Nguyen, Sang</creator><creator>Anthony, David B.</creator><creator>Qian, Hui</creator><creator>Yue, Chuntong</creator><creator>Singh, Aryaman</creator><creator>Bismarck, Alexander</creator><creator>Shaffer, Milo S.P.</creator><creator>Greenhalgh, Emile S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190929</creationdate><title>Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites</title><author>Nguyen, Sang ; Anthony, David B. ; Qian, Hui ; Yue, Chuntong ; Singh, Aryaman ; Bismarck, Alexander ; Shaffer, Milo S.P. ; Greenhalgh, Emile S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-e059bec1baa670f2f5ab2288d4069bd9571dd21b95521dbc6fa4b3a17bc7e173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerogels</topic><topic>Carbon aerogel composites</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Continuous fiber composites</topic><topic>Electrical resistivity</topic><topic>Epoxy resins</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fractography</topic><topic>Interfacial shear strength</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polyethylene glycol</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Tensile strength</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Sang</creatorcontrib><creatorcontrib>Anthony, David B.</creatorcontrib><creatorcontrib>Qian, Hui</creatorcontrib><creatorcontrib>Yue, Chuntong</creatorcontrib><creatorcontrib>Singh, Aryaman</creatorcontrib><creatorcontrib>Bismarck, Alexander</creatorcontrib><creatorcontrib>Shaffer, Milo S.P.</creatorcontrib><creatorcontrib>Greenhalgh, Emile S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Sang</au><au>Anthony, David B.</au><au>Qian, Hui</au><au>Yue, Chuntong</au><au>Singh, Aryaman</au><au>Bismarck, Alexander</au><au>Shaffer, Milo S.P.</au><au>Greenhalgh, Emile S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites</atitle><jtitle>Composites science and technology</jtitle><date>2019-09-29</date><risdate>2019</risdate><volume>182</volume><spage>107720</spage><pages>107720-</pages><artnum>107720</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Carbon aerogel (CAG) is a potential hierarchical reinforcement to improve the matrix-dominated mechanical properties of continuous carbon fibre reinforced polymer (CFRP) composites in both multifunctional and purely structural applications. When using CAG to reinforce a polyethylene glycol diglycidyl ether (PEGDGE) matrix, the interlaminar shear strength, compressive modulus and strength increased approximately four-fold, whilst the out-of-plane electrical conductivity increased by 118%. These mechanical and electrical performance enhancements significantly improve the multifunctional efficiency of composite structural supercapacitors, which can offer weight savings in transport and other applications. However, CAG also has the potential to reinforce conventional continuous CF composites in purely structural contexts. Here, CAG reinforcement of structural epoxy resin composites marginally increased compressive (1.4%) and tensile (2.7%) moduli respectively, but considerably reduced compressive, tensile and interlaminar shear strengths. Fractographic analysis shows that the reduced performance can be attributed to poor interfacial adhesion; in the future, alternative processing routes may resolve these issues to achieve advances in both moduli and strengths over conventional structural CFRPs.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.107720</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2019-09, Vol.182, p.107720, Article 107720 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2308018431 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aerogels Carbon aerogel composites Carbon fiber reinforced plastics Carbon fibers Composite materials Compressive strength Continuous fiber composites Electrical resistivity Epoxy resins Fiber composites Fiber reinforced polymers Fractography Interfacial shear strength Mechanical properties Modulus of elasticity Polyethylene glycol Polymer matrix composites Polymers Tensile strength Weight reduction |
title | Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20physical%20performance%20of%20carbon%20aerogel%20reinforced%20carbon%20fibre%20hierarchical%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Nguyen,%20Sang&rft.date=2019-09-29&rft.volume=182&rft.spage=107720&rft.pages=107720-&rft.artnum=107720&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.107720&rft_dat=%3Cproquest_cross%3E2308018431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308018431&rft_id=info:pmid/&rft_els_id=S0266353819307596&rfr_iscdi=true |