A Stochastic Optimal Regulator for a Class of Nonlinear Systems

This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the ave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-8
Hauptverfasser: Mavelli, Gabriella, Palumbo, Pasquale, Palombo, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Mavelli, Gabriella
Palumbo, Pasquale
Palombo, Giovanni
description This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case). The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in the regulator performances by increasing the order of the approximation.
doi_str_mv 10.1155/2019/9763193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307964810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307964810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4254d22909e911061fd5de6f3b7ba8537c0d828f4e1a453a1ade66ef873e5bd83</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraTLLZJCcpxS8oFqyCt5DuJnbLdlOTLdJ_b8oWPHoIE5iHGeZF6BLIHQDnI0pAjZQoGCh2hAbAC5ZxyMVx-hOaZ0DZ5yk6i3FFCAUOcoDux3je-XJpYleXeLbp6rVp8Jv92jam8wG79AyeNCZG7B1-9W1Tt9YEPN_Fzq7jOTpxpon24lCH6OPx4X3ynE1nTy-T8TQrGYguyynPK0oVUVYBkAJcxStbOLYQCyM5EyWpJJUut2ByzgyY1C2sk4JZvqgkG6Lrfu4m-O-tjZ1e-W1o00pNGRGqyCWQpG57VQYfY7BOb0I6KOw0EL2PSO8j0oeIEr_p-bJuK_NT_6evem2Tsc78aUqIZIz9AnXkbik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307964810</pqid></control><display><type>article</type><title>A Stochastic Optimal Regulator for a Class of Nonlinear Systems</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mavelli, Gabriella ; Palumbo, Pasquale ; Palombo, Giovanni</creator><contributor>Jator, Samuel N. ; Samuel N Jator</contributor><creatorcontrib>Mavelli, Gabriella ; Palumbo, Pasquale ; Palombo, Giovanni ; Jator, Samuel N. ; Samuel N Jator</creatorcontrib><description>This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case). The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in the regulator performances by increasing the order of the approximation.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/9763193</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Affine transformations ; Algorithms ; Computer simulation ; Drift ; Investigations ; Kalman filters ; Mathematical problems ; Noise ; Noise control ; Nonlinear systems ; Optimal control ; Theory</subject><ispartof>Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-8</ispartof><rights>Copyright © 2019 Gabriella Mavelli et al.</rights><rights>Copyright © 2019 Gabriella Mavelli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-4254d22909e911061fd5de6f3b7ba8537c0d828f4e1a453a1ade66ef873e5bd83</cites><orcidid>0000-0002-9371-2802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Jator, Samuel N.</contributor><contributor>Samuel N Jator</contributor><creatorcontrib>Mavelli, Gabriella</creatorcontrib><creatorcontrib>Palumbo, Pasquale</creatorcontrib><creatorcontrib>Palombo, Giovanni</creatorcontrib><title>A Stochastic Optimal Regulator for a Class of Nonlinear Systems</title><title>Mathematical problems in engineering</title><description>This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case). The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in the regulator performances by increasing the order of the approximation.</description><subject>Affine transformations</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Drift</subject><subject>Investigations</subject><subject>Kalman filters</subject><subject>Mathematical problems</subject><subject>Noise</subject><subject>Noise control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Theory</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraTLLZJCcpxS8oFqyCt5DuJnbLdlOTLdJ_b8oWPHoIE5iHGeZF6BLIHQDnI0pAjZQoGCh2hAbAC5ZxyMVx-hOaZ0DZ5yk6i3FFCAUOcoDux3je-XJpYleXeLbp6rVp8Jv92jam8wG79AyeNCZG7B1-9W1Tt9YEPN_Fzq7jOTpxpon24lCH6OPx4X3ynE1nTy-T8TQrGYguyynPK0oVUVYBkAJcxStbOLYQCyM5EyWpJJUut2ByzgyY1C2sk4JZvqgkG6Lrfu4m-O-tjZ1e-W1o00pNGRGqyCWQpG57VQYfY7BOb0I6KOw0EL2PSO8j0oeIEr_p-bJuK_NT_6evem2Tsc78aUqIZIz9AnXkbik</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Mavelli, Gabriella</creator><creator>Palumbo, Pasquale</creator><creator>Palombo, Giovanni</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9371-2802</orcidid></search><sort><creationdate>2019</creationdate><title>A Stochastic Optimal Regulator for a Class of Nonlinear Systems</title><author>Mavelli, Gabriella ; Palumbo, Pasquale ; Palombo, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4254d22909e911061fd5de6f3b7ba8537c0d828f4e1a453a1ade66ef873e5bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affine transformations</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Drift</topic><topic>Investigations</topic><topic>Kalman filters</topic><topic>Mathematical problems</topic><topic>Noise</topic><topic>Noise control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mavelli, Gabriella</creatorcontrib><creatorcontrib>Palumbo, Pasquale</creatorcontrib><creatorcontrib>Palombo, Giovanni</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mavelli, Gabriella</au><au>Palumbo, Pasquale</au><au>Palombo, Giovanni</au><au>Jator, Samuel N.</au><au>Samuel N Jator</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Optimal Regulator for a Class of Nonlinear Systems</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case). The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in the regulator performances by increasing the order of the approximation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/9763193</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9371-2802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-8
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2307964810
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Affine transformations
Algorithms
Computer simulation
Drift
Investigations
Kalman filters
Mathematical problems
Noise
Noise control
Nonlinear systems
Optimal control
Theory
title A Stochastic Optimal Regulator for a Class of Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Optimal%20Regulator%20for%20a%20Class%20of%20Nonlinear%20Systems&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Mavelli,%20Gabriella&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/9763193&rft_dat=%3Cproquest_cross%3E2307964810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307964810&rft_id=info:pmid/&rfr_iscdi=true