Intuitive Gait Pattern Generation for an Exoskeleton Robot

Exoskeleton robots are being studied and developed in various forms according to user. Among them, the most concentrated area is the lower limb exoskeleton robot for “walking,” which is the basic exercise of paralyzed patients. In this study, we utilize the gait cycle, speed, and stride, which are i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of precision engineering and manufacturing 2019-11, Vol.20 (11), p.1905-1913
Hauptverfasser: Hwang, S. H., Lee, S. C., Shin, D. B., Baek, I. H., Kim, M. J., Sun, D. I., Kim, B. S., Hwang, S. W., Han, C. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1913
container_issue 11
container_start_page 1905
container_title International journal of precision engineering and manufacturing
container_volume 20
creator Hwang, S. H.
Lee, S. C.
Shin, D. B.
Baek, I. H.
Kim, M. J.
Sun, D. I.
Kim, B. S.
Hwang, S. W.
Han, C. S.
description Exoskeleton robots are being studied and developed in various forms according to user. Among them, the most concentrated area is the lower limb exoskeleton robot for “walking,” which is the basic exercise of paralyzed patients. In this study, we utilize the gait cycle, speed, and stride, which are important dependent factors of gait, and not the control technique that uses the predefined gait pattern using the average value of the gait data of the general person used by the existing rehabilitation exoskeleton robot. By creating an end-point reference using a walking element and inverse kinematics, and by using a dynamic movement primitive technique to learn the gait data of the general public, generating the gait patterns of various walking environments without storing them in advance is possible. In this paper, we applied this method to the exoskeleton robot and show robot to generate various strides gait pattern by experiments.
doi_str_mv 10.1007/s12541-019-00184-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307761949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307761949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-80e40adc43b675869c0762265fb21d4b9fefb5266366eb7990816b5555de29fa3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJ5268Sam1UFBEzyHZJrJaNzXJivbXG13Bm3OZYXg_4EHolMA5AagvEqGCEwxEYQDScLw_QBMKIDCXQA_LTRnHtVDsGM1S6iwwQiUTjZygy1Wfhy53765ami5XdyZnF_tq6XoXTe5CX_kQK9NXi4-QXtzW5fK6DzbkE3TkzTa52e-eosfrxcP8Bq9vl6v51Rq3TLCMG3AczKblzMq6dKoWakmpFN5SsuFWeeetoFIyKZ2tlYKGSCvKbBxV3rApOhtzdzG8DS5l_RyG2JdKTRnUtSSKq6Kio6qNIaXovN7F7tXET01Af2PSIyZdMOkfTHpfTGw0pSLun1z8i_7H9QXOdGmv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307761949</pqid></control><display><type>article</type><title>Intuitive Gait Pattern Generation for an Exoskeleton Robot</title><source>SpringerLink Journals</source><creator>Hwang, S. H. ; Lee, S. C. ; Shin, D. B. ; Baek, I. H. ; Kim, M. J. ; Sun, D. I. ; Kim, B. S. ; Hwang, S. W. ; Han, C. S.</creator><creatorcontrib>Hwang, S. H. ; Lee, S. C. ; Shin, D. B. ; Baek, I. H. ; Kim, M. J. ; Sun, D. I. ; Kim, B. S. ; Hwang, S. W. ; Han, C. S.</creatorcontrib><description>Exoskeleton robots are being studied and developed in various forms according to user. Among them, the most concentrated area is the lower limb exoskeleton robot for “walking,” which is the basic exercise of paralyzed patients. In this study, we utilize the gait cycle, speed, and stride, which are important dependent factors of gait, and not the control technique that uses the predefined gait pattern using the average value of the gait data of the general person used by the existing rehabilitation exoskeleton robot. By creating an end-point reference using a walking element and inverse kinematics, and by using a dynamic movement primitive technique to learn the gait data of the general public, generating the gait patterns of various walking environments without storing them in advance is possible. In this paper, we applied this method to the exoskeleton robot and show robot to generate various strides gait pattern by experiments.</description><identifier>ISSN: 2234-7593</identifier><identifier>EISSN: 2005-4602</identifier><identifier>DOI: 10.1007/s12541-019-00184-z</identifier><language>eng</language><publisher>Seoul: Korean Society for Precision Engineering</publisher><subject>Engineering ; Exoskeletons ; Gait ; Industrial and Production Engineering ; Inverse kinematics ; Materials Science ; Pattern generation ; Regular Paper ; Rehabilitation ; Robots ; Walking</subject><ispartof>International journal of precision engineering and manufacturing, 2019-11, Vol.20 (11), p.1905-1913</ispartof><rights>Korean Society for Precision Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-80e40adc43b675869c0762265fb21d4b9fefb5266366eb7990816b5555de29fa3</citedby><cites>FETCH-LOGICAL-c353t-80e40adc43b675869c0762265fb21d4b9fefb5266366eb7990816b5555de29fa3</cites><orcidid>0000-0003-4845-7416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12541-019-00184-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12541-019-00184-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hwang, S. H.</creatorcontrib><creatorcontrib>Lee, S. C.</creatorcontrib><creatorcontrib>Shin, D. B.</creatorcontrib><creatorcontrib>Baek, I. H.</creatorcontrib><creatorcontrib>Kim, M. J.</creatorcontrib><creatorcontrib>Sun, D. I.</creatorcontrib><creatorcontrib>Kim, B. S.</creatorcontrib><creatorcontrib>Hwang, S. W.</creatorcontrib><creatorcontrib>Han, C. S.</creatorcontrib><title>Intuitive Gait Pattern Generation for an Exoskeleton Robot</title><title>International journal of precision engineering and manufacturing</title><addtitle>Int. J. Precis. Eng. Manuf</addtitle><description>Exoskeleton robots are being studied and developed in various forms according to user. Among them, the most concentrated area is the lower limb exoskeleton robot for “walking,” which is the basic exercise of paralyzed patients. In this study, we utilize the gait cycle, speed, and stride, which are important dependent factors of gait, and not the control technique that uses the predefined gait pattern using the average value of the gait data of the general person used by the existing rehabilitation exoskeleton robot. By creating an end-point reference using a walking element and inverse kinematics, and by using a dynamic movement primitive technique to learn the gait data of the general public, generating the gait patterns of various walking environments without storing them in advance is possible. In this paper, we applied this method to the exoskeleton robot and show robot to generate various strides gait pattern by experiments.</description><subject>Engineering</subject><subject>Exoskeletons</subject><subject>Gait</subject><subject>Industrial and Production Engineering</subject><subject>Inverse kinematics</subject><subject>Materials Science</subject><subject>Pattern generation</subject><subject>Regular Paper</subject><subject>Rehabilitation</subject><subject>Robots</subject><subject>Walking</subject><issn>2234-7593</issn><issn>2005-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz9HJ5268Sam1UFBEzyHZJrJaNzXJivbXG13Bm3OZYXg_4EHolMA5AagvEqGCEwxEYQDScLw_QBMKIDCXQA_LTRnHtVDsGM1S6iwwQiUTjZygy1Wfhy53765ami5XdyZnF_tq6XoXTe5CX_kQK9NXi4-QXtzW5fK6DzbkE3TkzTa52e-eosfrxcP8Bq9vl6v51Rq3TLCMG3AczKblzMq6dKoWakmpFN5SsuFWeeetoFIyKZ2tlYKGSCvKbBxV3rApOhtzdzG8DS5l_RyG2JdKTRnUtSSKq6Kio6qNIaXovN7F7tXET01Af2PSIyZdMOkfTHpfTGw0pSLun1z8i_7H9QXOdGmv</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Hwang, S. H.</creator><creator>Lee, S. C.</creator><creator>Shin, D. B.</creator><creator>Baek, I. H.</creator><creator>Kim, M. J.</creator><creator>Sun, D. I.</creator><creator>Kim, B. S.</creator><creator>Hwang, S. W.</creator><creator>Han, C. S.</creator><general>Korean Society for Precision Engineering</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4845-7416</orcidid></search><sort><creationdate>20191101</creationdate><title>Intuitive Gait Pattern Generation for an Exoskeleton Robot</title><author>Hwang, S. H. ; Lee, S. C. ; Shin, D. B. ; Baek, I. H. ; Kim, M. J. ; Sun, D. I. ; Kim, B. S. ; Hwang, S. W. ; Han, C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-80e40adc43b675869c0762265fb21d4b9fefb5266366eb7990816b5555de29fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>Exoskeletons</topic><topic>Gait</topic><topic>Industrial and Production Engineering</topic><topic>Inverse kinematics</topic><topic>Materials Science</topic><topic>Pattern generation</topic><topic>Regular Paper</topic><topic>Rehabilitation</topic><topic>Robots</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, S. H.</creatorcontrib><creatorcontrib>Lee, S. C.</creatorcontrib><creatorcontrib>Shin, D. B.</creatorcontrib><creatorcontrib>Baek, I. H.</creatorcontrib><creatorcontrib>Kim, M. J.</creatorcontrib><creatorcontrib>Sun, D. I.</creatorcontrib><creatorcontrib>Kim, B. S.</creatorcontrib><creatorcontrib>Hwang, S. W.</creatorcontrib><creatorcontrib>Han, C. S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of precision engineering and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, S. H.</au><au>Lee, S. C.</au><au>Shin, D. B.</au><au>Baek, I. H.</au><au>Kim, M. J.</au><au>Sun, D. I.</au><au>Kim, B. S.</au><au>Hwang, S. W.</au><au>Han, C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intuitive Gait Pattern Generation for an Exoskeleton Robot</atitle><jtitle>International journal of precision engineering and manufacturing</jtitle><stitle>Int. J. Precis. Eng. Manuf</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>20</volume><issue>11</issue><spage>1905</spage><epage>1913</epage><pages>1905-1913</pages><issn>2234-7593</issn><eissn>2005-4602</eissn><abstract>Exoskeleton robots are being studied and developed in various forms according to user. Among them, the most concentrated area is the lower limb exoskeleton robot for “walking,” which is the basic exercise of paralyzed patients. In this study, we utilize the gait cycle, speed, and stride, which are important dependent factors of gait, and not the control technique that uses the predefined gait pattern using the average value of the gait data of the general person used by the existing rehabilitation exoskeleton robot. By creating an end-point reference using a walking element and inverse kinematics, and by using a dynamic movement primitive technique to learn the gait data of the general public, generating the gait patterns of various walking environments without storing them in advance is possible. In this paper, we applied this method to the exoskeleton robot and show robot to generate various strides gait pattern by experiments.</abstract><cop>Seoul</cop><pub>Korean Society for Precision Engineering</pub><doi>10.1007/s12541-019-00184-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4845-7416</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2234-7593
ispartof International journal of precision engineering and manufacturing, 2019-11, Vol.20 (11), p.1905-1913
issn 2234-7593
2005-4602
language eng
recordid cdi_proquest_journals_2307761949
source SpringerLink Journals
subjects Engineering
Exoskeletons
Gait
Industrial and Production Engineering
Inverse kinematics
Materials Science
Pattern generation
Regular Paper
Rehabilitation
Robots
Walking
title Intuitive Gait Pattern Generation for an Exoskeleton Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intuitive%20Gait%20Pattern%20Generation%20for%20an%20Exoskeleton%20Robot&rft.jtitle=International%20journal%20of%20precision%20engineering%20and%20manufacturing&rft.au=Hwang,%20S.%20H.&rft.date=2019-11-01&rft.volume=20&rft.issue=11&rft.spage=1905&rft.epage=1913&rft.pages=1905-1913&rft.issn=2234-7593&rft.eissn=2005-4602&rft_id=info:doi/10.1007/s12541-019-00184-z&rft_dat=%3Cproquest_cross%3E2307761949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307761949&rft_id=info:pmid/&rfr_iscdi=true