Advanced analytics for detection and diagnosis of false alarms and faults: A real case study

Onshore and offshore wind farms require a high level of advanced maintenance. Supervisory control and data acquisition (SCADA) and condition monitoring systems are now being employed, generating large amounts of data. They require robust and flexible approaches to convert dataset into useful informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2019-11, Vol.22 (11), p.1622-1635
Hauptverfasser: Pliego Marugán, Alberto, García Márquez, Fausto Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1635
container_issue 11
container_start_page 1622
container_title Wind energy (Chichester, England)
container_volume 22
creator Pliego Marugán, Alberto
García Márquez, Fausto Pedro
description Onshore and offshore wind farms require a high level of advanced maintenance. Supervisory control and data acquisition (SCADA) and condition monitoring systems are now being employed, generating large amounts of data. They require robust and flexible approaches to convert dataset into useful information. This paper presents a novel approach based on the correlations of SCADA variables to detect and identify faults and false alarms in wind turbines. A correlation matrix between all the SCADA variables is used for pattern recognition. A new method based on curve fittings is employed for detecting false alarms and abnormal behaviours or faults in the components. The study is done in a real case study, validated with false alarms.
doi_str_mv 10.1002/we.2393
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307645042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307645042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3703-8b8b21871496e677d7eab073c8a9242aba3c1e8568ed8896718c35234c909ef3</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV_AsLHjxI6n4lu-utlPoBBS8FL8Ky2Z1ISprU3cSQf2-aevU0w7wPAzMI3VKyoISwxx4WjGt-hmaUaJ1QxcT51KeJYEJcoqsYd4RQQqmaoc-l_7G1A49tbauhLV3ERROwhxZcWzb1OPfYl_arbmIZcVPgwlYRsK1s2McpLWxXtfEJL3EAW2Fnxzi2nR-u0cWEb_7qHG2f19vVa7J5f3lbLTeJ45LwROUqZ1RJKnQGmZRegs2J5E5ZzQSzueWOgkozBV4pnUmqHE8ZF04TDQWfo7vT2kNovjuIrdk1XRjPiYZxIjOREsFGdX9SLjQxBijMIZR7GwZDiTl-zvRgjp8b5cNJ9mUFw3_MfKwn_QtcGWzp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307645042</pqid></control><display><type>article</type><title>Advanced analytics for detection and diagnosis of false alarms and faults: A real case study</title><source>Access via Wiley Online Library</source><creator>Pliego Marugán, Alberto ; García Márquez, Fausto Pedro</creator><creatorcontrib>Pliego Marugán, Alberto ; García Márquez, Fausto Pedro</creatorcontrib><description>Onshore and offshore wind farms require a high level of advanced maintenance. Supervisory control and data acquisition (SCADA) and condition monitoring systems are now being employed, generating large amounts of data. They require robust and flexible approaches to convert dataset into useful information. This paper presents a novel approach based on the correlations of SCADA variables to detect and identify faults and false alarms in wind turbines. A correlation matrix between all the SCADA variables is used for pattern recognition. A new method based on curve fittings is employed for detecting false alarms and abnormal behaviours or faults in the components. The study is done in a real case study, validated with false alarms.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2393</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Alarms ; analytics ; Case studies ; Condition monitoring ; Control systems ; Correlation analysis ; Curve fitting ; Data acquisition ; False alarms ; Fault detection ; Fault diagnosis ; Maintenance ; multivariable analysis ; Offshore energy sources ; Offshore operations ; Pattern recognition ; reliability ; SCADA ; Supervisory control and data acquisition ; Turbines ; Wind farms ; Wind power ; wind turbine ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2019-11, Vol.22 (11), p.1622-1635</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3703-8b8b21871496e677d7eab073c8a9242aba3c1e8568ed8896718c35234c909ef3</citedby><cites>FETCH-LOGICAL-c3703-8b8b21871496e677d7eab073c8a9242aba3c1e8568ed8896718c35234c909ef3</cites><orcidid>0000-0002-9192-9928 ; 0000-0002-9245-440X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2393$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2393$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pliego Marugán, Alberto</creatorcontrib><creatorcontrib>García Márquez, Fausto Pedro</creatorcontrib><title>Advanced analytics for detection and diagnosis of false alarms and faults: A real case study</title><title>Wind energy (Chichester, England)</title><description>Onshore and offshore wind farms require a high level of advanced maintenance. Supervisory control and data acquisition (SCADA) and condition monitoring systems are now being employed, generating large amounts of data. They require robust and flexible approaches to convert dataset into useful information. This paper presents a novel approach based on the correlations of SCADA variables to detect and identify faults and false alarms in wind turbines. A correlation matrix between all the SCADA variables is used for pattern recognition. A new method based on curve fittings is employed for detecting false alarms and abnormal behaviours or faults in the components. The study is done in a real case study, validated with false alarms.</description><subject>Alarms</subject><subject>analytics</subject><subject>Case studies</subject><subject>Condition monitoring</subject><subject>Control systems</subject><subject>Correlation analysis</subject><subject>Curve fitting</subject><subject>Data acquisition</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Maintenance</subject><subject>multivariable analysis</subject><subject>Offshore energy sources</subject><subject>Offshore operations</subject><subject>Pattern recognition</subject><subject>reliability</subject><subject>SCADA</subject><subject>Supervisory control and data acquisition</subject><subject>Turbines</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>wind turbine</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV_AsLHjxI6n4lu-utlPoBBS8FL8Ky2Z1ISprU3cSQf2-aevU0w7wPAzMI3VKyoISwxx4WjGt-hmaUaJ1QxcT51KeJYEJcoqsYd4RQQqmaoc-l_7G1A49tbauhLV3ERROwhxZcWzb1OPfYl_arbmIZcVPgwlYRsK1s2McpLWxXtfEJL3EAW2Fnxzi2nR-u0cWEb_7qHG2f19vVa7J5f3lbLTeJ45LwROUqZ1RJKnQGmZRegs2J5E5ZzQSzueWOgkozBV4pnUmqHE8ZF04TDQWfo7vT2kNovjuIrdk1XRjPiYZxIjOREsFGdX9SLjQxBijMIZR7GwZDiTl-zvRgjp8b5cNJ9mUFw3_MfKwn_QtcGWzp</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Pliego Marugán, Alberto</creator><creator>García Márquez, Fausto Pedro</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9192-9928</orcidid><orcidid>https://orcid.org/0000-0002-9245-440X</orcidid></search><sort><creationdate>201911</creationdate><title>Advanced analytics for detection and diagnosis of false alarms and faults: A real case study</title><author>Pliego Marugán, Alberto ; García Márquez, Fausto Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3703-8b8b21871496e677d7eab073c8a9242aba3c1e8568ed8896718c35234c909ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alarms</topic><topic>analytics</topic><topic>Case studies</topic><topic>Condition monitoring</topic><topic>Control systems</topic><topic>Correlation analysis</topic><topic>Curve fitting</topic><topic>Data acquisition</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Maintenance</topic><topic>multivariable analysis</topic><topic>Offshore energy sources</topic><topic>Offshore operations</topic><topic>Pattern recognition</topic><topic>reliability</topic><topic>SCADA</topic><topic>Supervisory control and data acquisition</topic><topic>Turbines</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pliego Marugán, Alberto</creatorcontrib><creatorcontrib>García Márquez, Fausto Pedro</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pliego Marugán, Alberto</au><au>García Márquez, Fausto Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced analytics for detection and diagnosis of false alarms and faults: A real case study</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2019-11</date><risdate>2019</risdate><volume>22</volume><issue>11</issue><spage>1622</spage><epage>1635</epage><pages>1622-1635</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>Onshore and offshore wind farms require a high level of advanced maintenance. Supervisory control and data acquisition (SCADA) and condition monitoring systems are now being employed, generating large amounts of data. They require robust and flexible approaches to convert dataset into useful information. This paper presents a novel approach based on the correlations of SCADA variables to detect and identify faults and false alarms in wind turbines. A correlation matrix between all the SCADA variables is used for pattern recognition. A new method based on curve fittings is employed for detecting false alarms and abnormal behaviours or faults in the components. The study is done in a real case study, validated with false alarms.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2393</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9192-9928</orcidid><orcidid>https://orcid.org/0000-0002-9245-440X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2019-11, Vol.22 (11), p.1622-1635
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_2307645042
source Access via Wiley Online Library
subjects Alarms
analytics
Case studies
Condition monitoring
Control systems
Correlation analysis
Curve fitting
Data acquisition
False alarms
Fault detection
Fault diagnosis
Maintenance
multivariable analysis
Offshore energy sources
Offshore operations
Pattern recognition
reliability
SCADA
Supervisory control and data acquisition
Turbines
Wind farms
Wind power
wind turbine
Wind turbines
title Advanced analytics for detection and diagnosis of false alarms and faults: A real case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20analytics%20for%20detection%20and%20diagnosis%20of%20false%20alarms%20and%20faults:%20A%20real%20case%20study&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Pliego%20Marug%C3%A1n,%20Alberto&rft.date=2019-11&rft.volume=22&rft.issue=11&rft.spage=1622&rft.epage=1635&rft.pages=1622-1635&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2393&rft_dat=%3Cproquest_cross%3E2307645042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307645042&rft_id=info:pmid/&rfr_iscdi=true