Multi‐dimensional conservation laws and integrable systems

In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2019-11, Vol.143 (4), p.339-355
Hauptverfasser: Makridin, Zakhar V., Pavlov, Maxim V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue 4
container_start_page 339
container_title Studies in applied mathematics (Cambridge)
container_volume 143
creator Makridin, Zakhar V.
Pavlov, Maxim V.
description In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.
doi_str_mv 10.1111/sapm.12280
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307634176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307634176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</originalsourceid><addsrcrecordid>eNp9kM1Kw0AQxxdRsFYvPkHAm5A6O9lsEvBSil_QoqCel81mV1LyUXdSS24-gs_ok5gaz85hhj_8Zhh-jJ1zmPGhrkhv6hlHTOGATbiQSZjFGRyyCQBiiDHKY3ZCtAYAnsQwYderbdWV359fRVnbhsq20VVg2oas_9DdEINK7yjQTRGUTWffvM4rG1BPna3plB05XZE9-5tT9np787K4D5ePdw-L-TI0EXAIc5S5FigSjSlyYZwWhUg5uthkLoPCFDZOrcmMzaXMwGnpYkx0VAgjEykhmrKL8e7Gt-9bS51at1s_fEoKI0hkJPjQpuxypIxvibx1auPLWvtecVB7O2pvR_3aGWA-wruysv0_pHqeP63GnR96dmiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307634176</pqid></control><display><type>article</type><title>Multi‐dimensional conservation laws and integrable systems</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Makridin, Zakhar V. ; Pavlov, Maxim V.</creator><creatorcontrib>Makridin, Zakhar V. ; Pavlov, Maxim V.</creatorcontrib><description>In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12280</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Chains ; Conservation laws ; dispersionless limit of the Kadomtsev‐Petviashvili equation ; integrable system ; multi‐dimensional conservation laws ; the Benney hydrodynamic chain ; then Mikhalëv equation</subject><ispartof>Studies in applied mathematics (Cambridge), 2019-11, Vol.143 (4), p.339-355</ispartof><rights>2019 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</citedby><cites>FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</cites><orcidid>0000-0003-1313-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12280$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12280$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Makridin, Zakhar V.</creatorcontrib><creatorcontrib>Pavlov, Maxim V.</creatorcontrib><title>Multi‐dimensional conservation laws and integrable systems</title><title>Studies in applied mathematics (Cambridge)</title><description>In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.</description><subject>Chains</subject><subject>Conservation laws</subject><subject>dispersionless limit of the Kadomtsev‐Petviashvili equation</subject><subject>integrable system</subject><subject>multi‐dimensional conservation laws</subject><subject>the Benney hydrodynamic chain</subject><subject>then Mikhalëv equation</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AQxxdRsFYvPkHAm5A6O9lsEvBSil_QoqCel81mV1LyUXdSS24-gs_ok5gaz85hhj_8Zhh-jJ1zmPGhrkhv6hlHTOGATbiQSZjFGRyyCQBiiDHKY3ZCtAYAnsQwYderbdWV359fRVnbhsq20VVg2oas_9DdEINK7yjQTRGUTWffvM4rG1BPna3plB05XZE9-5tT9np787K4D5ePdw-L-TI0EXAIc5S5FigSjSlyYZwWhUg5uthkLoPCFDZOrcmMzaXMwGnpYkx0VAgjEykhmrKL8e7Gt-9bS51at1s_fEoKI0hkJPjQpuxypIxvibx1auPLWvtecVB7O2pvR_3aGWA-wruysv0_pHqeP63GnR96dmiO</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Makridin, Zakhar V.</creator><creator>Pavlov, Maxim V.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-1313-3796</orcidid></search><sort><creationdate>201911</creationdate><title>Multi‐dimensional conservation laws and integrable systems</title><author>Makridin, Zakhar V. ; Pavlov, Maxim V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chains</topic><topic>Conservation laws</topic><topic>dispersionless limit of the Kadomtsev‐Petviashvili equation</topic><topic>integrable system</topic><topic>multi‐dimensional conservation laws</topic><topic>the Benney hydrodynamic chain</topic><topic>then Mikhalëv equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makridin, Zakhar V.</creatorcontrib><creatorcontrib>Pavlov, Maxim V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makridin, Zakhar V.</au><au>Pavlov, Maxim V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐dimensional conservation laws and integrable systems</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2019-11</date><risdate>2019</risdate><volume>143</volume><issue>4</issue><spage>339</spage><epage>355</epage><pages>339-355</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12280</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1313-3796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2526
ispartof Studies in applied mathematics (Cambridge), 2019-11, Vol.143 (4), p.339-355
issn 0022-2526
1467-9590
language eng
recordid cdi_proquest_journals_2307634176
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Chains
Conservation laws
dispersionless limit of the Kadomtsev‐Petviashvili equation
integrable system
multi‐dimensional conservation laws
the Benney hydrodynamic chain
then Mikhalëv equation
title Multi‐dimensional conservation laws and integrable systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90dimensional%20conservation%20laws%20and%20integrable%20systems&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Makridin,%20Zakhar%20V.&rft.date=2019-11&rft.volume=143&rft.issue=4&rft.spage=339&rft.epage=355&rft.pages=339-355&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12280&rft_dat=%3Cproquest_cross%3E2307634176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307634176&rft_id=info:pmid/&rfr_iscdi=true