Multi‐dimensional conservation laws and integrable systems
In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commut...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2019-11, Vol.143 (4), p.339-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 4 |
container_start_page | 339 |
container_title | Studies in applied mathematics (Cambridge) |
container_volume | 143 |
creator | Makridin, Zakhar V. Pavlov, Maxim V. |
description | In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains. |
doi_str_mv | 10.1111/sapm.12280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307634176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307634176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</originalsourceid><addsrcrecordid>eNp9kM1Kw0AQxxdRsFYvPkHAm5A6O9lsEvBSil_QoqCel81mV1LyUXdSS24-gs_ok5gaz85hhj_8Zhh-jJ1zmPGhrkhv6hlHTOGATbiQSZjFGRyyCQBiiDHKY3ZCtAYAnsQwYderbdWV359fRVnbhsq20VVg2oas_9DdEINK7yjQTRGUTWffvM4rG1BPna3plB05XZE9-5tT9np787K4D5ePdw-L-TI0EXAIc5S5FigSjSlyYZwWhUg5uthkLoPCFDZOrcmMzaXMwGnpYkx0VAgjEykhmrKL8e7Gt-9bS51at1s_fEoKI0hkJPjQpuxypIxvibx1auPLWvtecVB7O2pvR_3aGWA-wruysv0_pHqeP63GnR96dmiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307634176</pqid></control><display><type>article</type><title>Multi‐dimensional conservation laws and integrable systems</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Makridin, Zakhar V. ; Pavlov, Maxim V.</creator><creatorcontrib>Makridin, Zakhar V. ; Pavlov, Maxim V.</creatorcontrib><description>In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12280</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Chains ; Conservation laws ; dispersionless limit of the Kadomtsev‐Petviashvili equation ; integrable system ; multi‐dimensional conservation laws ; the Benney hydrodynamic chain ; then Mikhalëv equation</subject><ispartof>Studies in applied mathematics (Cambridge), 2019-11, Vol.143 (4), p.339-355</ispartof><rights>2019 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</citedby><cites>FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</cites><orcidid>0000-0003-1313-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12280$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12280$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Makridin, Zakhar V.</creatorcontrib><creatorcontrib>Pavlov, Maxim V.</creatorcontrib><title>Multi‐dimensional conservation laws and integrable systems</title><title>Studies in applied mathematics (Cambridge)</title><description>In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.</description><subject>Chains</subject><subject>Conservation laws</subject><subject>dispersionless limit of the Kadomtsev‐Petviashvili equation</subject><subject>integrable system</subject><subject>multi‐dimensional conservation laws</subject><subject>the Benney hydrodynamic chain</subject><subject>then Mikhalëv equation</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AQxxdRsFYvPkHAm5A6O9lsEvBSil_QoqCel81mV1LyUXdSS24-gs_ok5gaz85hhj_8Zhh-jJ1zmPGhrkhv6hlHTOGATbiQSZjFGRyyCQBiiDHKY3ZCtAYAnsQwYderbdWV359fRVnbhsq20VVg2oas_9DdEINK7yjQTRGUTWffvM4rG1BPna3plB05XZE9-5tT9np787K4D5ePdw-L-TI0EXAIc5S5FigSjSlyYZwWhUg5uthkLoPCFDZOrcmMzaXMwGnpYkx0VAgjEykhmrKL8e7Gt-9bS51at1s_fEoKI0hkJPjQpuxypIxvibx1auPLWvtecVB7O2pvR_3aGWA-wruysv0_pHqeP63GnR96dmiO</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Makridin, Zakhar V.</creator><creator>Pavlov, Maxim V.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-1313-3796</orcidid></search><sort><creationdate>201911</creationdate><title>Multi‐dimensional conservation laws and integrable systems</title><author>Makridin, Zakhar V. ; Pavlov, Maxim V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-b26ba4247a28214cfa4d4812f5c9f90dcde58ec9ceb6690fa6f527a3d4c676603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chains</topic><topic>Conservation laws</topic><topic>dispersionless limit of the Kadomtsev‐Petviashvili equation</topic><topic>integrable system</topic><topic>multi‐dimensional conservation laws</topic><topic>the Benney hydrodynamic chain</topic><topic>then Mikhalëv equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makridin, Zakhar V.</creatorcontrib><creatorcontrib>Pavlov, Maxim V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makridin, Zakhar V.</au><au>Pavlov, Maxim V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐dimensional conservation laws and integrable systems</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2019-11</date><risdate>2019</risdate><volume>143</volume><issue>4</issue><spage>339</spage><epage>355</epage><pages>339-355</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12280</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1313-3796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2526 |
ispartof | Studies in applied mathematics (Cambridge), 2019-11, Vol.143 (4), p.339-355 |
issn | 0022-2526 1467-9590 |
language | eng |
recordid | cdi_proquest_journals_2307634176 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Chains Conservation laws dispersionless limit of the Kadomtsev‐Petviashvili equation integrable system multi‐dimensional conservation laws the Benney hydrodynamic chain then Mikhalëv equation |
title | Multi‐dimensional conservation laws and integrable systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90dimensional%20conservation%20laws%20and%20integrable%20systems&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Makridin,%20Zakhar%20V.&rft.date=2019-11&rft.volume=143&rft.issue=4&rft.spage=339&rft.epage=355&rft.pages=339-355&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12280&rft_dat=%3Cproquest_cross%3E2307634176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307634176&rft_id=info:pmid/&rfr_iscdi=true |