Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation
Effective mass has been touted as an important descriptor in thermoelectric transport. Based on theoretical intuition, some reports demonstrate that low effective mass is preferable in thermoelectrics, while others propose that a large density of states effective mass for high Seebeck is the pathway...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (41), p.23762-23769 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23769 |
---|---|
container_issue | 41 |
container_start_page | 23762 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Suwardi, Ady Bash, Daniil Ng, Hong Kuan Gomez, Jose Recatala Repaka, D. V. Maheswar Kumar, Pawan Hippalgaonkar, Kedar |
description | Effective mass has been touted as an important descriptor in thermoelectric transport. Based on theoretical intuition, some reports demonstrate that low effective mass is preferable in thermoelectrics, while others propose that a large density of states effective mass for high Seebeck is the pathway to better thermoelectric materials. Leveraging on the available data from Materials Project, we present a data-driven conclusion that corroborates the central role of effective mass in high-throughput thermoelectric materials screening. The efficacy of the Fermi surface complexity factor in enhancing power factor is analyzed in relation to the effective mass for a large number of compounds. Here, we show that starting with a low inertial effective mass material, any changes in Fermi surface complexity factor will have a pronounced effect on its thermoelectric power factor and verify this strategy in recently discovered thermoelectric materials. This can be accomplished by employing band engineering using doping, or symmetry distortion, and starting with a base material that intrinsically possesses a low inertial effective mass. |
doi_str_mv | 10.1039/C9TA05967A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307455627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307455627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a5a98657b42f101d210ecb5beb644cb2e1fe568d21e983dc68d86f082852108d3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34Cxa8CauT7CabHEvxo1DwUs_LbHaCKdvdmqQF_70RRR1mmMebNzPwGLvmcMehMvcrs12CNKpZnrGZAAllUxt1_ou1vmSLGHeQQwMoY2YM1yOF5HEoyDmyyZ-o2GOMBeYc_5E9RRv8IU2hcLnSG4X9REOeBm9jcfJY9Jiw7ENW58UTDkdMfhqv2IXDIdLip8_Z6-PDdvVcbl6e1qvlprQ1VKlEiUYr2XS1cBx4LziQ7WRHnapr2wnijqTSmSejq95mqJUDLbTMUt1Xc3bzffcQpvcjxdTupmMY88tWVNDUUirRZNXtt8qGKcZArj0Ev8fw0XJov1xs_1ysPgHQNGUG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307455627</pqid></control><display><type>article</type><title>Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Suwardi, Ady ; Bash, Daniil ; Ng, Hong Kuan ; Gomez, Jose Recatala ; Repaka, D. V. Maheswar ; Kumar, Pawan ; Hippalgaonkar, Kedar</creator><creatorcontrib>Suwardi, Ady ; Bash, Daniil ; Ng, Hong Kuan ; Gomez, Jose Recatala ; Repaka, D. V. Maheswar ; Kumar, Pawan ; Hippalgaonkar, Kedar</creatorcontrib><description>Effective mass has been touted as an important descriptor in thermoelectric transport. Based on theoretical intuition, some reports demonstrate that low effective mass is preferable in thermoelectrics, while others propose that a large density of states effective mass for high Seebeck is the pathway to better thermoelectric materials. Leveraging on the available data from Materials Project, we present a data-driven conclusion that corroborates the central role of effective mass in high-throughput thermoelectric materials screening. The efficacy of the Fermi surface complexity factor in enhancing power factor is analyzed in relation to the effective mass for a large number of compounds. Here, we show that starting with a low inertial effective mass material, any changes in Fermi surface complexity factor will have a pronounced effect on its thermoelectric power factor and verify this strategy in recently discovered thermoelectric materials. This can be accomplished by employing band engineering using doping, or symmetry distortion, and starting with a base material that intrinsically possesses a low inertial effective mass.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA05967A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Complexity ; Fermi surfaces ; Power factor ; Thermoelectric materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (41), p.23762-23769</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a5a98657b42f101d210ecb5beb644cb2e1fe568d21e983dc68d86f082852108d3</citedby><cites>FETCH-LOGICAL-c403t-a5a98657b42f101d210ecb5beb644cb2e1fe568d21e983dc68d86f082852108d3</cites><orcidid>0000-0002-1270-9047 ; 0000-0002-7342-0431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Suwardi, Ady</creatorcontrib><creatorcontrib>Bash, Daniil</creatorcontrib><creatorcontrib>Ng, Hong Kuan</creatorcontrib><creatorcontrib>Gomez, Jose Recatala</creatorcontrib><creatorcontrib>Repaka, D. V. Maheswar</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><title>Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Effective mass has been touted as an important descriptor in thermoelectric transport. Based on theoretical intuition, some reports demonstrate that low effective mass is preferable in thermoelectrics, while others propose that a large density of states effective mass for high Seebeck is the pathway to better thermoelectric materials. Leveraging on the available data from Materials Project, we present a data-driven conclusion that corroborates the central role of effective mass in high-throughput thermoelectric materials screening. The efficacy of the Fermi surface complexity factor in enhancing power factor is analyzed in relation to the effective mass for a large number of compounds. Here, we show that starting with a low inertial effective mass material, any changes in Fermi surface complexity factor will have a pronounced effect on its thermoelectric power factor and verify this strategy in recently discovered thermoelectric materials. This can be accomplished by employing band engineering using doping, or symmetry distortion, and starting with a base material that intrinsically possesses a low inertial effective mass.</description><subject>Complexity</subject><subject>Fermi surfaces</subject><subject>Power factor</subject><subject>Thermoelectric materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEQDaJgqb34Cxa8CauT7CabHEvxo1DwUs_LbHaCKdvdmqQF_70RRR1mmMebNzPwGLvmcMehMvcrs12CNKpZnrGZAAllUxt1_ou1vmSLGHeQQwMoY2YM1yOF5HEoyDmyyZ-o2GOMBeYc_5E9RRv8IU2hcLnSG4X9REOeBm9jcfJY9Jiw7ENW58UTDkdMfhqv2IXDIdLip8_Z6-PDdvVcbl6e1qvlprQ1VKlEiUYr2XS1cBx4LziQ7WRHnapr2wnijqTSmSejq95mqJUDLbTMUt1Xc3bzffcQpvcjxdTupmMY88tWVNDUUirRZNXtt8qGKcZArj0Ev8fw0XJov1xs_1ysPgHQNGUG</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Suwardi, Ady</creator><creator>Bash, Daniil</creator><creator>Ng, Hong Kuan</creator><creator>Gomez, Jose Recatala</creator><creator>Repaka, D. V. Maheswar</creator><creator>Kumar, Pawan</creator><creator>Hippalgaonkar, Kedar</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0002-7342-0431</orcidid></search><sort><creationdate>2019</creationdate><title>Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation</title><author>Suwardi, Ady ; Bash, Daniil ; Ng, Hong Kuan ; Gomez, Jose Recatala ; Repaka, D. V. Maheswar ; Kumar, Pawan ; Hippalgaonkar, Kedar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a5a98657b42f101d210ecb5beb644cb2e1fe568d21e983dc68d86f082852108d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><topic>Fermi surfaces</topic><topic>Power factor</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suwardi, Ady</creatorcontrib><creatorcontrib>Bash, Daniil</creatorcontrib><creatorcontrib>Ng, Hong Kuan</creatorcontrib><creatorcontrib>Gomez, Jose Recatala</creatorcontrib><creatorcontrib>Repaka, D. V. Maheswar</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suwardi, Ady</au><au>Bash, Daniil</au><au>Ng, Hong Kuan</au><au>Gomez, Jose Recatala</au><au>Repaka, D. V. Maheswar</au><au>Kumar, Pawan</au><au>Hippalgaonkar, Kedar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>41</issue><spage>23762</spage><epage>23769</epage><pages>23762-23769</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Effective mass has been touted as an important descriptor in thermoelectric transport. Based on theoretical intuition, some reports demonstrate that low effective mass is preferable in thermoelectrics, while others propose that a large density of states effective mass for high Seebeck is the pathway to better thermoelectric materials. Leveraging on the available data from Materials Project, we present a data-driven conclusion that corroborates the central role of effective mass in high-throughput thermoelectric materials screening. The efficacy of the Fermi surface complexity factor in enhancing power factor is analyzed in relation to the effective mass for a large number of compounds. Here, we show that starting with a low inertial effective mass material, any changes in Fermi surface complexity factor will have a pronounced effect on its thermoelectric power factor and verify this strategy in recently discovered thermoelectric materials. This can be accomplished by employing band engineering using doping, or symmetry distortion, and starting with a base material that intrinsically possesses a low inertial effective mass.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA05967A</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0002-7342-0431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (41), p.23762-23769 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2307455627 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Complexity Fermi surfaces Power factor Thermoelectric materials |
title | Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20effective%20mass%20as%20an%20effective%20descriptor%20for%20thermoelectrics%20via%20data-driven%20evaluation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Suwardi,%20Ady&rft.date=2019&rft.volume=7&rft.issue=41&rft.spage=23762&rft.epage=23769&rft.pages=23762-23769&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA05967A&rft_dat=%3Cproquest_cross%3E2307455627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307455627&rft_id=info:pmid/&rfr_iscdi=true |