The potential of mechanical alloying to improve the strength and ductility of Mo–9Si–8B–1Zr alloys – experiments and simulation

Multi-phase Mo–Si–B alloys were intensively researched during the last decade as they are promising candidates for high temperature applications beyond the capabilities of single-crystalline Ni-based superalloys. Small additions of Zr improve the mechanical properties of the Mo solid solution phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2019-10, Vol.113, p.106558, Article 106558
Hauptverfasser: Krüger, M., Kauss, O., Naumenko, K., Burmeister, C., Wessel, E., Schmelzer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106558
container_title Intermetallics
container_volume 113
creator Krüger, M.
Kauss, O.
Naumenko, K.
Burmeister, C.
Wessel, E.
Schmelzer, J.
description Multi-phase Mo–Si–B alloys were intensively researched during the last decade as they are promising candidates for high temperature applications beyond the capabilities of single-crystalline Ni-based superalloys. Small additions of Zr improve the mechanical properties of the Mo solid solution phase (Moss), especially it lowers the brittle-to-ductile transition temperature and improves the fracture toughness. This work shows how mechanical alloying (MA) as the crucial step of powder metallurgical (PM) production will significantly influence the materials mechanical properties of Mo–9Si–8B–1Zr alloys in a wide temperature range from room temperature up to 1400 °C. The formation, continuity and length scale of the individual phases during PM processing is evaluated in detail using experimental methods and numerical studies. Furthermore, the mechanisms of deformation and fracture of the bulk materials are discussed with respect to the microstructural features. For comparison of the mechanical properties achieved by PM processing we produced the similar alloy composition by a conventional solidification process and characterized it by the same evaluation methods. [Display omitted] •MA affects homogeneity, morphology, and grain size of Mo–9Si–8B–1Zr powders.•Continuity and size scale of the constituents correlate to energy transfer by MA.•Optimized process leads to a continuous Moss phase and improved fracture toughness.•ZrO2 particles improve the mechanical strength of multi-phase Mo–9Si–8B–1Zr.•BDTT is reduced due to a continuous Moss phase as well as the Zr effect.
doi_str_mv 10.1016/j.intermet.2019.106558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307390765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979519303152</els_id><sourcerecordid>2307390765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1737aaa889741c82c327c0463f9be7cfd0f8bc828f14b569298009e384b107bf3</originalsourceid><addsrcrecordid>eNqFUMluFDEQtRBIDIFfQJZy7qHci5dbQsQSKSgHwoWL5XZXZzzqtie2J8rccuMD-MN8STw0nLlUqUpvqXqEvGewZsD4h-3a-Yxxxryugamy5F0nX5AVk0JVUDP-kqxAcV4pobrX5E1KWwAmoOlW5NfNBukuZPTZmYmGkc5oN8Y7WyYzTeHg_C3Ngbp5F8M90lzwKUf0t3lDjR_osLfZTS4fjuRv4enxt_ruSpUfS2E_46KSaJkoPuwwurmYpT_c5Ob9ZLIL_i15NZop4bu__YT8-Pzp5uJrdXX95fLi_KqyLfBcMdEIY4yUSrTMyto2tbDQ8mZUPQo7DjDKvuzlyNq-46pWEkBhI9uegejH5oScLrrlm7s9pqy3YR99sdR1A6JRIHhXUHxB2RhSijjqXTnbxINmoI-h663-F7o-hq6X0AvxbCFi-eHeYdTJOvQWBxfRZj0E9z-JZ4Eok4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307390765</pqid></control><display><type>article</type><title>The potential of mechanical alloying to improve the strength and ductility of Mo–9Si–8B–1Zr alloys – experiments and simulation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Krüger, M. ; Kauss, O. ; Naumenko, K. ; Burmeister, C. ; Wessel, E. ; Schmelzer, J.</creator><creatorcontrib>Krüger, M. ; Kauss, O. ; Naumenko, K. ; Burmeister, C. ; Wessel, E. ; Schmelzer, J.</creatorcontrib><description>Multi-phase Mo–Si–B alloys were intensively researched during the last decade as they are promising candidates for high temperature applications beyond the capabilities of single-crystalline Ni-based superalloys. Small additions of Zr improve the mechanical properties of the Mo solid solution phase (Moss), especially it lowers the brittle-to-ductile transition temperature and improves the fracture toughness. This work shows how mechanical alloying (MA) as the crucial step of powder metallurgical (PM) production will significantly influence the materials mechanical properties of Mo–9Si–8B–1Zr alloys in a wide temperature range from room temperature up to 1400 °C. The formation, continuity and length scale of the individual phases during PM processing is evaluated in detail using experimental methods and numerical studies. Furthermore, the mechanisms of deformation and fracture of the bulk materials are discussed with respect to the microstructural features. For comparison of the mechanical properties achieved by PM processing we produced the similar alloy composition by a conventional solidification process and characterized it by the same evaluation methods. [Display omitted] •MA affects homogeneity, morphology, and grain size of Mo–9Si–8B–1Zr powders.•Continuity and size scale of the constituents correlate to energy transfer by MA.•Optimized process leads to a continuous Moss phase and improved fracture toughness.•ZrO2 particles improve the mechanical strength of multi-phase Mo–9Si–8B–1Zr.•BDTT is reduced due to a continuous Moss phase as well as the Zr effect.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2019.106558</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Alloy design ; Computer simulation ; Ductile fracture ; Ductile-brittle transition ; Electron backscatter diffraction ; Fracture mechanics ; Fracture toughness ; High temperature ; Intermetallic ; Mechanical alloying ; Mechanical properties ; Microalloying ; Molybdenum base alloys ; Nickel base alloys ; Numerical methods ; Powder metallurgy ; Single crystals ; Solid solutions ; Solidification ; Superalloys ; Transition temperature ; Zirconium</subject><ispartof>Intermetallics, 2019-10, Vol.113, p.106558, Article 106558</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1737aaa889741c82c327c0463f9be7cfd0f8bc828f14b569298009e384b107bf3</citedby><cites>FETCH-LOGICAL-c406t-1737aaa889741c82c327c0463f9be7cfd0f8bc828f14b569298009e384b107bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2019.106558$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Krüger, M.</creatorcontrib><creatorcontrib>Kauss, O.</creatorcontrib><creatorcontrib>Naumenko, K.</creatorcontrib><creatorcontrib>Burmeister, C.</creatorcontrib><creatorcontrib>Wessel, E.</creatorcontrib><creatorcontrib>Schmelzer, J.</creatorcontrib><title>The potential of mechanical alloying to improve the strength and ductility of Mo–9Si–8B–1Zr alloys – experiments and simulation</title><title>Intermetallics</title><description>Multi-phase Mo–Si–B alloys were intensively researched during the last decade as they are promising candidates for high temperature applications beyond the capabilities of single-crystalline Ni-based superalloys. Small additions of Zr improve the mechanical properties of the Mo solid solution phase (Moss), especially it lowers the brittle-to-ductile transition temperature and improves the fracture toughness. This work shows how mechanical alloying (MA) as the crucial step of powder metallurgical (PM) production will significantly influence the materials mechanical properties of Mo–9Si–8B–1Zr alloys in a wide temperature range from room temperature up to 1400 °C. The formation, continuity and length scale of the individual phases during PM processing is evaluated in detail using experimental methods and numerical studies. Furthermore, the mechanisms of deformation and fracture of the bulk materials are discussed with respect to the microstructural features. For comparison of the mechanical properties achieved by PM processing we produced the similar alloy composition by a conventional solidification process and characterized it by the same evaluation methods. [Display omitted] •MA affects homogeneity, morphology, and grain size of Mo–9Si–8B–1Zr powders.•Continuity and size scale of the constituents correlate to energy transfer by MA.•Optimized process leads to a continuous Moss phase and improved fracture toughness.•ZrO2 particles improve the mechanical strength of multi-phase Mo–9Si–8B–1Zr.•BDTT is reduced due to a continuous Moss phase as well as the Zr effect.</description><subject>Alloy design</subject><subject>Computer simulation</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Electron backscatter diffraction</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>High temperature</subject><subject>Intermetallic</subject><subject>Mechanical alloying</subject><subject>Mechanical properties</subject><subject>Microalloying</subject><subject>Molybdenum base alloys</subject><subject>Nickel base alloys</subject><subject>Numerical methods</subject><subject>Powder metallurgy</subject><subject>Single crystals</subject><subject>Solid solutions</subject><subject>Solidification</subject><subject>Superalloys</subject><subject>Transition temperature</subject><subject>Zirconium</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMluFDEQtRBIDIFfQJZy7qHci5dbQsQSKSgHwoWL5XZXZzzqtie2J8rccuMD-MN8STw0nLlUqUpvqXqEvGewZsD4h-3a-Yxxxryugamy5F0nX5AVk0JVUDP-kqxAcV4pobrX5E1KWwAmoOlW5NfNBukuZPTZmYmGkc5oN8Y7WyYzTeHg_C3Ngbp5F8M90lzwKUf0t3lDjR_osLfZTS4fjuRv4enxt_ruSpUfS2E_46KSaJkoPuwwurmYpT_c5Ob9ZLIL_i15NZop4bu__YT8-Pzp5uJrdXX95fLi_KqyLfBcMdEIY4yUSrTMyto2tbDQ8mZUPQo7DjDKvuzlyNq-46pWEkBhI9uegejH5oScLrrlm7s9pqy3YR99sdR1A6JRIHhXUHxB2RhSijjqXTnbxINmoI-h663-F7o-hq6X0AvxbCFi-eHeYdTJOvQWBxfRZj0E9z-JZ4Eok4s</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Krüger, M.</creator><creator>Kauss, O.</creator><creator>Naumenko, K.</creator><creator>Burmeister, C.</creator><creator>Wessel, E.</creator><creator>Schmelzer, J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201910</creationdate><title>The potential of mechanical alloying to improve the strength and ductility of Mo–9Si–8B–1Zr alloys – experiments and simulation</title><author>Krüger, M. ; Kauss, O. ; Naumenko, K. ; Burmeister, C. ; Wessel, E. ; Schmelzer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1737aaa889741c82c327c0463f9be7cfd0f8bc828f14b569298009e384b107bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy design</topic><topic>Computer simulation</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Electron backscatter diffraction</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>High temperature</topic><topic>Intermetallic</topic><topic>Mechanical alloying</topic><topic>Mechanical properties</topic><topic>Microalloying</topic><topic>Molybdenum base alloys</topic><topic>Nickel base alloys</topic><topic>Numerical methods</topic><topic>Powder metallurgy</topic><topic>Single crystals</topic><topic>Solid solutions</topic><topic>Solidification</topic><topic>Superalloys</topic><topic>Transition temperature</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krüger, M.</creatorcontrib><creatorcontrib>Kauss, O.</creatorcontrib><creatorcontrib>Naumenko, K.</creatorcontrib><creatorcontrib>Burmeister, C.</creatorcontrib><creatorcontrib>Wessel, E.</creatorcontrib><creatorcontrib>Schmelzer, J.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krüger, M.</au><au>Kauss, O.</au><au>Naumenko, K.</au><au>Burmeister, C.</au><au>Wessel, E.</au><au>Schmelzer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The potential of mechanical alloying to improve the strength and ductility of Mo–9Si–8B–1Zr alloys – experiments and simulation</atitle><jtitle>Intermetallics</jtitle><date>2019-10</date><risdate>2019</risdate><volume>113</volume><spage>106558</spage><pages>106558-</pages><artnum>106558</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>Multi-phase Mo–Si–B alloys were intensively researched during the last decade as they are promising candidates for high temperature applications beyond the capabilities of single-crystalline Ni-based superalloys. Small additions of Zr improve the mechanical properties of the Mo solid solution phase (Moss), especially it lowers the brittle-to-ductile transition temperature and improves the fracture toughness. This work shows how mechanical alloying (MA) as the crucial step of powder metallurgical (PM) production will significantly influence the materials mechanical properties of Mo–9Si–8B–1Zr alloys in a wide temperature range from room temperature up to 1400 °C. The formation, continuity and length scale of the individual phases during PM processing is evaluated in detail using experimental methods and numerical studies. Furthermore, the mechanisms of deformation and fracture of the bulk materials are discussed with respect to the microstructural features. For comparison of the mechanical properties achieved by PM processing we produced the similar alloy composition by a conventional solidification process and characterized it by the same evaluation methods. [Display omitted] •MA affects homogeneity, morphology, and grain size of Mo–9Si–8B–1Zr powders.•Continuity and size scale of the constituents correlate to energy transfer by MA.•Optimized process leads to a continuous Moss phase and improved fracture toughness.•ZrO2 particles improve the mechanical strength of multi-phase Mo–9Si–8B–1Zr.•BDTT is reduced due to a continuous Moss phase as well as the Zr effect.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2019.106558</doi></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2019-10, Vol.113, p.106558, Article 106558
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2307390765
source Access via ScienceDirect (Elsevier)
subjects Alloy design
Computer simulation
Ductile fracture
Ductile-brittle transition
Electron backscatter diffraction
Fracture mechanics
Fracture toughness
High temperature
Intermetallic
Mechanical alloying
Mechanical properties
Microalloying
Molybdenum base alloys
Nickel base alloys
Numerical methods
Powder metallurgy
Single crystals
Solid solutions
Solidification
Superalloys
Transition temperature
Zirconium
title The potential of mechanical alloying to improve the strength and ductility of Mo–9Si–8B–1Zr alloys – experiments and simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20potential%20of%20mechanical%20alloying%20to%20improve%20the%20strength%20and%20ductility%20of%20Mo%E2%80%939Si%E2%80%938B%E2%80%931Zr%20alloys%20%E2%80%93%20experiments%20and%20simulation&rft.jtitle=Intermetallics&rft.au=Kr%C3%BCger,%20M.&rft.date=2019-10&rft.volume=113&rft.spage=106558&rft.pages=106558-&rft.artnum=106558&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2019.106558&rft_dat=%3Cproquest_cross%3E2307390765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307390765&rft_id=info:pmid/&rft_els_id=S0966979519303152&rfr_iscdi=true