Interference fit process development for the ITER Vacuum Vessel Gravity Support mock-up fabrication

The ITER Vacuum Vessel (VV) is supported by the nine VV gravity supports (VVGS) located on the cryostat toroidal pedestal. The VVGS is dual hinge type that fastened by dowel in the hinge-block hole. This paper presents the technical approach and result on the interference fitting process of the slee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2019-09, Vol.146, p.1907-1911
Hauptverfasser: Cheon, Jason, Park, Chulkyu, Moon, Hokyu, Chung, Woo-Ho, Kim, Hyun-Soo, Hong, Kwen-Hee, Kim, Gwang-Ho, Kim, Yu-Gyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1911
container_issue
container_start_page 1907
container_title Fusion engineering and design
container_volume 146
creator Cheon, Jason
Park, Chulkyu
Moon, Hokyu
Chung, Woo-Ho
Kim, Hyun-Soo
Hong, Kwen-Hee
Kim, Gwang-Ho
Kim, Yu-Gyeong
description The ITER Vacuum Vessel (VV) is supported by the nine VV gravity supports (VVGS) located on the cryostat toroidal pedestal. The VVGS is dual hinge type that fastened by dowel in the hinge-block hole. This paper presents the technical approach and result on the interference fitting process of the sleeve to the full-scaled VVGS mock-up. Since the sleeve and the hinge-block hole have under millimeter tolerance and around two-meter long length, the shrink fit method has been selected for the interference fitting of the sleeve into the hinge-block hole. The duration time for required shrinkage was expected by the simple analytical approach of natural convective heat transfer. The coolant charging method was suggested to secure a sufficient time for the process. The liquid nitrogen was charged to the handling fixture capped sleeve hole’s cavity. As a result, the necessary contraction time was secured as thousands of seconds. Consequently, the interference fitting was successfully done for VVGS mock-up fabrication, and the technical solutions will be applied to the VVGS manufacturing.
doi_str_mv 10.1016/j.fusengdes.2019.03.063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307387005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379619303849</els_id><sourcerecordid>2307387005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ddcc41cfb884679a73f737dd3430102819acc2319b3ff64fc21ac9b1dc6f208f3</originalsourceid><addsrcrecordid>eNqFkEFrGzEQhUVpoG7S3xBBz7sdrZzV6hiMmxgMgcTxVcijUSvXXm0lrcH_vmtcei0MvMt7b3gfY_cCagGi_bav_Zip_-Eo1w0IXYOsoZUf2Ex0SlZK6PYjm4FuoJJKt5_Y55z3AEJNN2O46gslT4l6JO5D4UOKSDlzRyc6xOFIfeE-Jl5-El9tlq98a3Ecj3w7mejAn5I9hXLmb-MwxFT4MeKvahy4t7sU0JYQ-zt24-0h05e_esvevy83i-dq_fK0WjyuK2w6XSrnEOcC_a7r5q3SVkmvpHJOziUIaDqhLWIjhd5J79u5x0ZY1DvhsPUNdF7esq_X3mnC75FyMfs4pn56aRoJSnYK4GFyqasLU8w5kTdDCkebzkaAuRA1e_OPqLkQNSDNRHRKPl6TNI04BUomY7hwcyERFuNi-G_HH6MohQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307387005</pqid></control><display><type>article</type><title>Interference fit process development for the ITER Vacuum Vessel Gravity Support mock-up fabrication</title><source>Elsevier ScienceDirect Journals</source><creator>Cheon, Jason ; Park, Chulkyu ; Moon, Hokyu ; Chung, Woo-Ho ; Kim, Hyun-Soo ; Hong, Kwen-Hee ; Kim, Gwang-Ho ; Kim, Yu-Gyeong</creator><creatorcontrib>Cheon, Jason ; Park, Chulkyu ; Moon, Hokyu ; Chung, Woo-Ho ; Kim, Hyun-Soo ; Hong, Kwen-Hee ; Kim, Gwang-Ho ; Kim, Yu-Gyeong</creatorcontrib><description>The ITER Vacuum Vessel (VV) is supported by the nine VV gravity supports (VVGS) located on the cryostat toroidal pedestal. The VVGS is dual hinge type that fastened by dowel in the hinge-block hole. This paper presents the technical approach and result on the interference fitting process of the sleeve to the full-scaled VVGS mock-up. Since the sleeve and the hinge-block hole have under millimeter tolerance and around two-meter long length, the shrink fit method has been selected for the interference fitting of the sleeve into the hinge-block hole. The duration time for required shrinkage was expected by the simple analytical approach of natural convective heat transfer. The coolant charging method was suggested to secure a sufficient time for the process. The liquid nitrogen was charged to the handling fixture capped sleeve hole’s cavity. As a result, the necessary contraction time was secured as thousands of seconds. Consequently, the interference fitting was successfully done for VVGS mock-up fabrication, and the technical solutions will be applied to the VVGS manufacturing.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2019.03.063</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Charging ; Convective heat transfer ; Coolant charging method ; Gravitation ; Interference ; Interference fit ; ITER ; Liquid nitrogen ; Lumped capacitance method ; Shrink fit ; Shrinkage ; Vacuum Vessel Gravity Support ; Vessels</subject><ispartof>Fusion engineering and design, 2019-09, Vol.146, p.1907-1911</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ddcc41cfb884679a73f737dd3430102819acc2319b3ff64fc21ac9b1dc6f208f3</cites><orcidid>0000-0002-4027-1193 ; 0000-0003-2271-2511 ; 0000-0001-5452-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379619303849$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cheon, Jason</creatorcontrib><creatorcontrib>Park, Chulkyu</creatorcontrib><creatorcontrib>Moon, Hokyu</creatorcontrib><creatorcontrib>Chung, Woo-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Soo</creatorcontrib><creatorcontrib>Hong, Kwen-Hee</creatorcontrib><creatorcontrib>Kim, Gwang-Ho</creatorcontrib><creatorcontrib>Kim, Yu-Gyeong</creatorcontrib><title>Interference fit process development for the ITER Vacuum Vessel Gravity Support mock-up fabrication</title><title>Fusion engineering and design</title><description>The ITER Vacuum Vessel (VV) is supported by the nine VV gravity supports (VVGS) located on the cryostat toroidal pedestal. The VVGS is dual hinge type that fastened by dowel in the hinge-block hole. This paper presents the technical approach and result on the interference fitting process of the sleeve to the full-scaled VVGS mock-up. Since the sleeve and the hinge-block hole have under millimeter tolerance and around two-meter long length, the shrink fit method has been selected for the interference fitting of the sleeve into the hinge-block hole. The duration time for required shrinkage was expected by the simple analytical approach of natural convective heat transfer. The coolant charging method was suggested to secure a sufficient time for the process. The liquid nitrogen was charged to the handling fixture capped sleeve hole’s cavity. As a result, the necessary contraction time was secured as thousands of seconds. Consequently, the interference fitting was successfully done for VVGS mock-up fabrication, and the technical solutions will be applied to the VVGS manufacturing.</description><subject>Charging</subject><subject>Convective heat transfer</subject><subject>Coolant charging method</subject><subject>Gravitation</subject><subject>Interference</subject><subject>Interference fit</subject><subject>ITER</subject><subject>Liquid nitrogen</subject><subject>Lumped capacitance method</subject><subject>Shrink fit</subject><subject>Shrinkage</subject><subject>Vacuum Vessel Gravity Support</subject><subject>Vessels</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFrGzEQhUVpoG7S3xBBz7sdrZzV6hiMmxgMgcTxVcijUSvXXm0lrcH_vmtcei0MvMt7b3gfY_cCagGi_bav_Zip_-Eo1w0IXYOsoZUf2Ex0SlZK6PYjm4FuoJJKt5_Y55z3AEJNN2O46gslT4l6JO5D4UOKSDlzRyc6xOFIfeE-Jl5-El9tlq98a3Ecj3w7mejAn5I9hXLmb-MwxFT4MeKvahy4t7sU0JYQ-zt24-0h05e_esvevy83i-dq_fK0WjyuK2w6XSrnEOcC_a7r5q3SVkmvpHJOziUIaDqhLWIjhd5J79u5x0ZY1DvhsPUNdF7esq_X3mnC75FyMfs4pn56aRoJSnYK4GFyqasLU8w5kTdDCkebzkaAuRA1e_OPqLkQNSDNRHRKPl6TNI04BUomY7hwcyERFuNi-G_HH6MohQg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Cheon, Jason</creator><creator>Park, Chulkyu</creator><creator>Moon, Hokyu</creator><creator>Chung, Woo-Ho</creator><creator>Kim, Hyun-Soo</creator><creator>Hong, Kwen-Hee</creator><creator>Kim, Gwang-Ho</creator><creator>Kim, Yu-Gyeong</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4027-1193</orcidid><orcidid>https://orcid.org/0000-0003-2271-2511</orcidid><orcidid>https://orcid.org/0000-0001-5452-7500</orcidid></search><sort><creationdate>201909</creationdate><title>Interference fit process development for the ITER Vacuum Vessel Gravity Support mock-up fabrication</title><author>Cheon, Jason ; Park, Chulkyu ; Moon, Hokyu ; Chung, Woo-Ho ; Kim, Hyun-Soo ; Hong, Kwen-Hee ; Kim, Gwang-Ho ; Kim, Yu-Gyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ddcc41cfb884679a73f737dd3430102819acc2319b3ff64fc21ac9b1dc6f208f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charging</topic><topic>Convective heat transfer</topic><topic>Coolant charging method</topic><topic>Gravitation</topic><topic>Interference</topic><topic>Interference fit</topic><topic>ITER</topic><topic>Liquid nitrogen</topic><topic>Lumped capacitance method</topic><topic>Shrink fit</topic><topic>Shrinkage</topic><topic>Vacuum Vessel Gravity Support</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Jason</creatorcontrib><creatorcontrib>Park, Chulkyu</creatorcontrib><creatorcontrib>Moon, Hokyu</creatorcontrib><creatorcontrib>Chung, Woo-Ho</creatorcontrib><creatorcontrib>Kim, Hyun-Soo</creatorcontrib><creatorcontrib>Hong, Kwen-Hee</creatorcontrib><creatorcontrib>Kim, Gwang-Ho</creatorcontrib><creatorcontrib>Kim, Yu-Gyeong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, Jason</au><au>Park, Chulkyu</au><au>Moon, Hokyu</au><au>Chung, Woo-Ho</au><au>Kim, Hyun-Soo</au><au>Hong, Kwen-Hee</au><au>Kim, Gwang-Ho</au><au>Kim, Yu-Gyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interference fit process development for the ITER Vacuum Vessel Gravity Support mock-up fabrication</atitle><jtitle>Fusion engineering and design</jtitle><date>2019-09</date><risdate>2019</risdate><volume>146</volume><spage>1907</spage><epage>1911</epage><pages>1907-1911</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>The ITER Vacuum Vessel (VV) is supported by the nine VV gravity supports (VVGS) located on the cryostat toroidal pedestal. The VVGS is dual hinge type that fastened by dowel in the hinge-block hole. This paper presents the technical approach and result on the interference fitting process of the sleeve to the full-scaled VVGS mock-up. Since the sleeve and the hinge-block hole have under millimeter tolerance and around two-meter long length, the shrink fit method has been selected for the interference fitting of the sleeve into the hinge-block hole. The duration time for required shrinkage was expected by the simple analytical approach of natural convective heat transfer. The coolant charging method was suggested to secure a sufficient time for the process. The liquid nitrogen was charged to the handling fixture capped sleeve hole’s cavity. As a result, the necessary contraction time was secured as thousands of seconds. Consequently, the interference fitting was successfully done for VVGS mock-up fabrication, and the technical solutions will be applied to the VVGS manufacturing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2019.03.063</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4027-1193</orcidid><orcidid>https://orcid.org/0000-0003-2271-2511</orcidid><orcidid>https://orcid.org/0000-0001-5452-7500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2019-09, Vol.146, p.1907-1911
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2307387005
source Elsevier ScienceDirect Journals
subjects Charging
Convective heat transfer
Coolant charging method
Gravitation
Interference
Interference fit
ITER
Liquid nitrogen
Lumped capacitance method
Shrink fit
Shrinkage
Vacuum Vessel Gravity Support
Vessels
title Interference fit process development for the ITER Vacuum Vessel Gravity Support mock-up fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interference%20fit%20process%20development%20for%20the%20ITER%20Vacuum%20Vessel%20Gravity%20Support%20mock-up%20fabrication&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Cheon,%20Jason&rft.date=2019-09&rft.volume=146&rft.spage=1907&rft.epage=1911&rft.pages=1907-1911&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2019.03.063&rft_dat=%3Cproquest_cross%3E2307387005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307387005&rft_id=info:pmid/&rft_els_id=S0920379619303849&rfr_iscdi=true