Engineering and integration risks arising from advanced magnetic divertor configurations

The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, poloidal field coil positions, and size of toroidal field coils. It also requires a corresponding configu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2019-09, Vol.146, p.2281-2284
Hauptverfasser: Kembleton, R., Federici, G., Ambrosino, R., Maviglia, F., Siccinio, M., Reimerdes, H., Ha, S., Merriman, S., Bachmann, C., Suiko, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2284
container_issue
container_start_page 2281
container_title Fusion engineering and design
container_volume 146
creator Kembleton, R.
Federici, G.
Ambrosino, R.
Maviglia, F.
Siccinio, M.
Reimerdes, H.
Ha, S.
Merriman, S.
Bachmann, C.
Suiko, M.
description The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, poloidal field coil positions, and size of toroidal field coils. It also requires a corresponding configuration of plasma-facing components (PFCs) and a remote handling scheme to be able to handle the cassettes and associated in-vessel components (IVC) the configuration requires. There is a risk that the baseline ITER-like single-null (SN) divertor configuration cannot meet the PFC technology limits regarding power exhaust and first wall protection while achieving the target plasma performance requirements of DEMO or a future fusion power plant. Alternative magnetic configurations – double-null, snowflake, X-, and super-X – exist and potentially offer solutions to these risks and a route to achievable power handling in DEMO. But these options impose significant changes on machine architecture, increase the machine complexity and affect remote handling and plasma physics and so an integrated approach must be taken to assessing the feasibility of these options. In this paper we describe the work programme to assess the requirements for incorporating these configurations into DEMO.
doi_str_mv 10.1016/j.fusengdes.2019.03.172
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307386981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379619305058</els_id><sourcerecordid>2307386981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5f01bb86976a218e16c4d3c59c132e020b90523658ad78cc6e763da3f2f6efc13</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BgOuW_OwSbMchvEBghsFdyGT3JRUJx2TzoD_3pSKW-HCWdxzzuV-CF1TUlNCxW1f-0OG2DnINSNU1YTXVLITtKCt5JWkSpyiBVGMVFwqcY4ucu4JobLMAr1vYhciQAqxwyY6HOIIXTJjGCJOIX9kbIpMW5-GHTbuaKIFh3emizAGi104QhqHhO0QfegOczZfojNvPjNc_eoSvd1vXteP1fPLw9N69VxZrsRYNZ7Q7bYVSgrDaAtU2DvHbaMs5QwII1tFGsZF0xonW2sFSMGd4Z55Ab6Yluhm7t2n4esAedT9cEixnNSME8lLdTu55Oyyacg5gdf7FHYmfWtK9IRR9_oPo54wasJ1wViSqzkJ5YljgKSzDTAhCAnsqN0Q_u34AfbCgYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307386981</pqid></control><display><type>article</type><title>Engineering and integration risks arising from advanced magnetic divertor configurations</title><source>Elsevier ScienceDirect Journals</source><creator>Kembleton, R. ; Federici, G. ; Ambrosino, R. ; Maviglia, F. ; Siccinio, M. ; Reimerdes, H. ; Ha, S. ; Merriman, S. ; Bachmann, C. ; Suiko, M.</creator><creatorcontrib>Kembleton, R. ; Federici, G. ; Ambrosino, R. ; Maviglia, F. ; Siccinio, M. ; Reimerdes, H. ; Ha, S. ; Merriman, S. ; Bachmann, C. ; Suiko, M.</creatorcontrib><description>The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, poloidal field coil positions, and size of toroidal field coils. It also requires a corresponding configuration of plasma-facing components (PFCs) and a remote handling scheme to be able to handle the cassettes and associated in-vessel components (IVC) the configuration requires. There is a risk that the baseline ITER-like single-null (SN) divertor configuration cannot meet the PFC technology limits regarding power exhaust and first wall protection while achieving the target plasma performance requirements of DEMO or a future fusion power plant. Alternative magnetic configurations – double-null, snowflake, X-, and super-X – exist and potentially offer solutions to these risks and a route to achievable power handling in DEMO. But these options impose significant changes on machine architecture, increase the machine complexity and affect remote handling and plasma physics and so an integrated approach must be taken to assessing the feasibility of these options. In this paper we describe the work programme to assess the requirements for incorporating these configurations into DEMO.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2019.03.172</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cassettes ; Configurations ; DEMO ; Design parameters ; Electric power generation ; Field coils ; Fusion power plant ; Materials handling ; Nuclear power plants ; Plasma physics ; Remote handling ; System modelling ; Systems studies ; Technology choices ; Tokamak devices</subject><ispartof>Fusion engineering and design, 2019-09, Vol.146, p.2281-2284</ispartof><rights>2019</rights><rights>Copyright Elsevier Science Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5f01bb86976a218e16c4d3c59c132e020b90523658ad78cc6e763da3f2f6efc13</citedby><cites>FETCH-LOGICAL-c396t-5f01bb86976a218e16c4d3c59c132e020b90523658ad78cc6e763da3f2f6efc13</cites><orcidid>0000-0002-2270-3618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379619305058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kembleton, R.</creatorcontrib><creatorcontrib>Federici, G.</creatorcontrib><creatorcontrib>Ambrosino, R.</creatorcontrib><creatorcontrib>Maviglia, F.</creatorcontrib><creatorcontrib>Siccinio, M.</creatorcontrib><creatorcontrib>Reimerdes, H.</creatorcontrib><creatorcontrib>Ha, S.</creatorcontrib><creatorcontrib>Merriman, S.</creatorcontrib><creatorcontrib>Bachmann, C.</creatorcontrib><creatorcontrib>Suiko, M.</creatorcontrib><title>Engineering and integration risks arising from advanced magnetic divertor configurations</title><title>Fusion engineering and design</title><description>The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, poloidal field coil positions, and size of toroidal field coils. It also requires a corresponding configuration of plasma-facing components (PFCs) and a remote handling scheme to be able to handle the cassettes and associated in-vessel components (IVC) the configuration requires. There is a risk that the baseline ITER-like single-null (SN) divertor configuration cannot meet the PFC technology limits regarding power exhaust and first wall protection while achieving the target plasma performance requirements of DEMO or a future fusion power plant. Alternative magnetic configurations – double-null, snowflake, X-, and super-X – exist and potentially offer solutions to these risks and a route to achievable power handling in DEMO. But these options impose significant changes on machine architecture, increase the machine complexity and affect remote handling and plasma physics and so an integrated approach must be taken to assessing the feasibility of these options. In this paper we describe the work programme to assess the requirements for incorporating these configurations into DEMO.</description><subject>Cassettes</subject><subject>Configurations</subject><subject>DEMO</subject><subject>Design parameters</subject><subject>Electric power generation</subject><subject>Field coils</subject><subject>Fusion power plant</subject><subject>Materials handling</subject><subject>Nuclear power plants</subject><subject>Plasma physics</subject><subject>Remote handling</subject><subject>System modelling</subject><subject>Systems studies</subject><subject>Technology choices</subject><subject>Tokamak devices</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BgOuW_OwSbMchvEBghsFdyGT3JRUJx2TzoD_3pSKW-HCWdxzzuV-CF1TUlNCxW1f-0OG2DnINSNU1YTXVLITtKCt5JWkSpyiBVGMVFwqcY4ucu4JobLMAr1vYhciQAqxwyY6HOIIXTJjGCJOIX9kbIpMW5-GHTbuaKIFh3emizAGi104QhqHhO0QfegOczZfojNvPjNc_eoSvd1vXteP1fPLw9N69VxZrsRYNZ7Q7bYVSgrDaAtU2DvHbaMs5QwII1tFGsZF0xonW2sFSMGd4Z55Ab6Yluhm7t2n4esAedT9cEixnNSME8lLdTu55Oyyacg5gdf7FHYmfWtK9IRR9_oPo54wasJ1wViSqzkJ5YljgKSzDTAhCAnsqN0Q_u34AfbCgYU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kembleton, R.</creator><creator>Federici, G.</creator><creator>Ambrosino, R.</creator><creator>Maviglia, F.</creator><creator>Siccinio, M.</creator><creator>Reimerdes, H.</creator><creator>Ha, S.</creator><creator>Merriman, S.</creator><creator>Bachmann, C.</creator><creator>Suiko, M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2270-3618</orcidid></search><sort><creationdate>20190901</creationdate><title>Engineering and integration risks arising from advanced magnetic divertor configurations</title><author>Kembleton, R. ; Federici, G. ; Ambrosino, R. ; Maviglia, F. ; Siccinio, M. ; Reimerdes, H. ; Ha, S. ; Merriman, S. ; Bachmann, C. ; Suiko, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5f01bb86976a218e16c4d3c59c132e020b90523658ad78cc6e763da3f2f6efc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cassettes</topic><topic>Configurations</topic><topic>DEMO</topic><topic>Design parameters</topic><topic>Electric power generation</topic><topic>Field coils</topic><topic>Fusion power plant</topic><topic>Materials handling</topic><topic>Nuclear power plants</topic><topic>Plasma physics</topic><topic>Remote handling</topic><topic>System modelling</topic><topic>Systems studies</topic><topic>Technology choices</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kembleton, R.</creatorcontrib><creatorcontrib>Federici, G.</creatorcontrib><creatorcontrib>Ambrosino, R.</creatorcontrib><creatorcontrib>Maviglia, F.</creatorcontrib><creatorcontrib>Siccinio, M.</creatorcontrib><creatorcontrib>Reimerdes, H.</creatorcontrib><creatorcontrib>Ha, S.</creatorcontrib><creatorcontrib>Merriman, S.</creatorcontrib><creatorcontrib>Bachmann, C.</creatorcontrib><creatorcontrib>Suiko, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kembleton, R.</au><au>Federici, G.</au><au>Ambrosino, R.</au><au>Maviglia, F.</au><au>Siccinio, M.</au><au>Reimerdes, H.</au><au>Ha, S.</au><au>Merriman, S.</au><au>Bachmann, C.</au><au>Suiko, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering and integration risks arising from advanced magnetic divertor configurations</atitle><jtitle>Fusion engineering and design</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>146</volume><spage>2281</spage><epage>2284</epage><pages>2281-2284</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, poloidal field coil positions, and size of toroidal field coils. It also requires a corresponding configuration of plasma-facing components (PFCs) and a remote handling scheme to be able to handle the cassettes and associated in-vessel components (IVC) the configuration requires. There is a risk that the baseline ITER-like single-null (SN) divertor configuration cannot meet the PFC technology limits regarding power exhaust and first wall protection while achieving the target plasma performance requirements of DEMO or a future fusion power plant. Alternative magnetic configurations – double-null, snowflake, X-, and super-X – exist and potentially offer solutions to these risks and a route to achievable power handling in DEMO. But these options impose significant changes on machine architecture, increase the machine complexity and affect remote handling and plasma physics and so an integrated approach must be taken to assessing the feasibility of these options. In this paper we describe the work programme to assess the requirements for incorporating these configurations into DEMO.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2019.03.172</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2270-3618</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2019-09, Vol.146, p.2281-2284
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2307386981
source Elsevier ScienceDirect Journals
subjects Cassettes
Configurations
DEMO
Design parameters
Electric power generation
Field coils
Fusion power plant
Materials handling
Nuclear power plants
Plasma physics
Remote handling
System modelling
Systems studies
Technology choices
Tokamak devices
title Engineering and integration risks arising from advanced magnetic divertor configurations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20and%20integration%20risks%20arising%20from%20advanced%20magnetic%20divertor%20configurations&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Kembleton,%20R.&rft.date=2019-09-01&rft.volume=146&rft.spage=2281&rft.epage=2284&rft.pages=2281-2284&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2019.03.172&rft_dat=%3Cproquest_cross%3E2307386981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307386981&rft_id=info:pmid/&rft_els_id=S0920379619305058&rfr_iscdi=true