Constructing weak simulations from linear implications for processes with private names

This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2019-09, Vol.29 (8), p.1275-1308
Hauptverfasser: Horne, Ross, Tiu, Alwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue 8
container_start_page 1275
container_title Mathematical structures in computer science
container_volume 29
creator Horne, Ross
Tiu, Alwen
description This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.
doi_str_mv 10.1017/S0960129518000452
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307346760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0960129518000452</cupid><sourcerecordid>2307346760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-159cfcfd515e009e5f8043d7a2460196561f1e33f023d825ba806b51bfdf61ca3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvAU8V2eSJm2PsviCBQ8qHkuaJmvWPtakdfHfm7IrHsTTMHyP-eYj5BzhEgGzqycoJCArBOYAkAp2QGaYyiLJIWOHZDbByYQfk5MQ1gDIEYoZeV30XRj8qAfXrejWqHcaXDs2anARoNb3LW1cZ5Snrt00Tv8Avacb32sTggl064a3uLpPNRjaqdaEU3JkVRPM2X7OycvtzfPiPlk-3j0srpeJ5siGBEWhrba1QGEACiNsDimvM8XS-E4hhUSLhnMLjNc5E5XKQVYCK1tbiVrxObnY-cYwH6MJQ7nuR9_FkyXjkPFUZhIiC3cs7fsQvLFlDNsq_1UilFN_5Z_-oobvNaqtvKtX5tf6f9U3-Cdyvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307346760</pqid></control><display><type>article</type><title>Constructing weak simulations from linear implications for processes with private names</title><source>Cambridge Journals</source><creator>Horne, Ross ; Tiu, Alwen</creator><creatorcontrib>Horne, Ross ; Tiu, Alwen</creatorcontrib><description>This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S0960129518000452</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Calculus ; Simulation</subject><ispartof>Mathematical structures in computer science, 2019-09, Vol.29 (8), p.1275-1308</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-159cfcfd515e009e5f8043d7a2460196561f1e33f023d825ba806b51bfdf61ca3</cites><orcidid>0000-0003-0162-1901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0960129518000452/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27926,27927,55630</link.rule.ids></links><search><creatorcontrib>Horne, Ross</creatorcontrib><creatorcontrib>Tiu, Alwen</creatorcontrib><title>Constructing weak simulations from linear implications for processes with private names</title><title>Mathematical structures in computer science</title><addtitle>Math. Struct. Comp. Sci</addtitle><description>This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.</description><subject>Calculus</subject><subject>Simulation</subject><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLxDAQDqLguvoDvAU8V2eSJm2PsviCBQ8qHkuaJmvWPtakdfHfm7IrHsTTMHyP-eYj5BzhEgGzqycoJCArBOYAkAp2QGaYyiLJIWOHZDbByYQfk5MQ1gDIEYoZeV30XRj8qAfXrejWqHcaXDs2anARoNb3LW1cZ5Snrt00Tv8Avacb32sTggl064a3uLpPNRjaqdaEU3JkVRPM2X7OycvtzfPiPlk-3j0srpeJ5siGBEWhrba1QGEACiNsDimvM8XS-E4hhUSLhnMLjNc5E5XKQVYCK1tbiVrxObnY-cYwH6MJQ7nuR9_FkyXjkPFUZhIiC3cs7fsQvLFlDNsq_1UilFN_5Z_-oobvNaqtvKtX5tf6f9U3-Cdyvg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Horne, Ross</creator><creator>Tiu, Alwen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0162-1901</orcidid></search><sort><creationdate>201909</creationdate><title>Constructing weak simulations from linear implications for processes with private names</title><author>Horne, Ross ; Tiu, Alwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-159cfcfd515e009e5f8043d7a2460196561f1e33f023d825ba806b51bfdf61ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horne, Ross</creatorcontrib><creatorcontrib>Tiu, Alwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horne, Ross</au><au>Tiu, Alwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing weak simulations from linear implications for processes with private names</atitle><jtitle>Mathematical structures in computer science</jtitle><addtitle>Math. Struct. Comp. Sci</addtitle><date>2019-09</date><risdate>2019</risdate><volume>29</volume><issue>8</issue><spage>1275</spage><epage>1308</epage><pages>1275-1308</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0960129518000452</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-0162-1901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1295
ispartof Mathematical structures in computer science, 2019-09, Vol.29 (8), p.1275-1308
issn 0960-1295
1469-8072
language eng
recordid cdi_proquest_journals_2307346760
source Cambridge Journals
subjects Calculus
Simulation
title Constructing weak simulations from linear implications for processes with private names
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20weak%20simulations%20from%20linear%20implications%20for%20processes%20with%20private%20names&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=Horne,%20Ross&rft.date=2019-09&rft.volume=29&rft.issue=8&rft.spage=1275&rft.epage=1308&rft.pages=1275-1308&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S0960129518000452&rft_dat=%3Cproquest_cross%3E2307346760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307346760&rft_id=info:pmid/&rft_cupid=10_1017_S0960129518000452&rfr_iscdi=true