Constructing weak simulations from linear implications for processes with private names
This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifier...
Gespeichert in:
Veröffentlicht in: | Mathematical structures in computer science 2019-09, Vol.29 (8), p.1275-1308 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1308 |
---|---|
container_issue | 8 |
container_start_page | 1275 |
container_title | Mathematical structures in computer science |
container_volume | 29 |
creator | Horne, Ross Tiu, Alwen |
description | This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder. |
doi_str_mv | 10.1017/S0960129518000452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307346760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0960129518000452</cupid><sourcerecordid>2307346760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-159cfcfd515e009e5f8043d7a2460196561f1e33f023d825ba806b51bfdf61ca3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvAU8V2eSJm2PsviCBQ8qHkuaJmvWPtakdfHfm7IrHsTTMHyP-eYj5BzhEgGzqycoJCArBOYAkAp2QGaYyiLJIWOHZDbByYQfk5MQ1gDIEYoZeV30XRj8qAfXrejWqHcaXDs2anARoNb3LW1cZ5Snrt00Tv8Avacb32sTggl064a3uLpPNRjaqdaEU3JkVRPM2X7OycvtzfPiPlk-3j0srpeJ5siGBEWhrba1QGEACiNsDimvM8XS-E4hhUSLhnMLjNc5E5XKQVYCK1tbiVrxObnY-cYwH6MJQ7nuR9_FkyXjkPFUZhIiC3cs7fsQvLFlDNsq_1UilFN_5Z_-oobvNaqtvKtX5tf6f9U3-Cdyvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307346760</pqid></control><display><type>article</type><title>Constructing weak simulations from linear implications for processes with private names</title><source>Cambridge Journals</source><creator>Horne, Ross ; Tiu, Alwen</creator><creatorcontrib>Horne, Ross ; Tiu, Alwen</creatorcontrib><description>This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S0960129518000452</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Calculus ; Simulation</subject><ispartof>Mathematical structures in computer science, 2019-09, Vol.29 (8), p.1275-1308</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-159cfcfd515e009e5f8043d7a2460196561f1e33f023d825ba806b51bfdf61ca3</cites><orcidid>0000-0003-0162-1901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0960129518000452/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27926,27927,55630</link.rule.ids></links><search><creatorcontrib>Horne, Ross</creatorcontrib><creatorcontrib>Tiu, Alwen</creatorcontrib><title>Constructing weak simulations from linear implications for processes with private names</title><title>Mathematical structures in computer science</title><addtitle>Math. Struct. Comp. Sci</addtitle><description>This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.</description><subject>Calculus</subject><subject>Simulation</subject><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLxDAQDqLguvoDvAU8V2eSJm2PsviCBQ8qHkuaJmvWPtakdfHfm7IrHsTTMHyP-eYj5BzhEgGzqycoJCArBOYAkAp2QGaYyiLJIWOHZDbByYQfk5MQ1gDIEYoZeV30XRj8qAfXrejWqHcaXDs2anARoNb3LW1cZ5Snrt00Tv8Avacb32sTggl064a3uLpPNRjaqdaEU3JkVRPM2X7OycvtzfPiPlk-3j0srpeJ5siGBEWhrba1QGEACiNsDimvM8XS-E4hhUSLhnMLjNc5E5XKQVYCK1tbiVrxObnY-cYwH6MJQ7nuR9_FkyXjkPFUZhIiC3cs7fsQvLFlDNsq_1UilFN_5Z_-oobvNaqtvKtX5tf6f9U3-Cdyvg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Horne, Ross</creator><creator>Tiu, Alwen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0162-1901</orcidid></search><sort><creationdate>201909</creationdate><title>Constructing weak simulations from linear implications for processes with private names</title><author>Horne, Ross ; Tiu, Alwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-159cfcfd515e009e5f8043d7a2460196561f1e33f023d825ba806b51bfdf61ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horne, Ross</creatorcontrib><creatorcontrib>Tiu, Alwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horne, Ross</au><au>Tiu, Alwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing weak simulations from linear implications for processes with private names</atitle><jtitle>Mathematical structures in computer science</jtitle><addtitle>Math. Struct. Comp. Sci</addtitle><date>2019-09</date><risdate>2019</risdate><volume>29</volume><issue>8</issue><spage>1275</spage><epage>1308</epage><pages>1275-1308</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>This paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0960129518000452</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-0162-1901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1295 |
ispartof | Mathematical structures in computer science, 2019-09, Vol.29 (8), p.1275-1308 |
issn | 0960-1295 1469-8072 |
language | eng |
recordid | cdi_proquest_journals_2307346760 |
source | Cambridge Journals |
subjects | Calculus Simulation |
title | Constructing weak simulations from linear implications for processes with private names |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20weak%20simulations%20from%20linear%20implications%20for%20processes%20with%20private%20names&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=Horne,%20Ross&rft.date=2019-09&rft.volume=29&rft.issue=8&rft.spage=1275&rft.epage=1308&rft.pages=1275-1308&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S0960129518000452&rft_dat=%3Cproquest_cross%3E2307346760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307346760&rft_id=info:pmid/&rft_cupid=10_1017_S0960129518000452&rfr_iscdi=true |