Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging
The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as han...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2019-10, Vol.66 (10), p.2252-2260 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2260 |
---|---|
container_issue | 10 |
container_start_page | 2252 |
container_title | IEEE transactions on nuclear science |
container_volume | 66 |
creator | Hellfeld, Daniel Barton, Paul Gunter, Donald Haefner, Andrew Mihailescu, Lucian Vetter, Kai |
description | The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field. |
doi_str_mv | 10.1109/TNS.2019.2939948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2307304887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826435</ieee_id><sourcerecordid>2307304887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpug66lvvpIZcFOqrUKrUOt6mExeamqT1Exa6L83pcXV48G5l8sh5JbBgDEwj4v3zwEHZgbcCGOkPiM9ppSmTCX6nPQAmKZGGnNJrkJYda9UoHrkaY5uTRdFidG4QaSzeldUy2jo22KH0ajOMItmLvxE4jmauLJ0dO720Vvplh12TS5ytw54c7p98jV-WYxe6fRj8jYaTqmXPG5pmrFuGHADuUiEyrwHlanUCC1Ziqglylwq5iA2MnNJDtpjynPguYkVMiX65P7YW4e2sMEXLfpvX1cV-tYyFXPGdAc9HKFNU_9uMbR2VW-bqttluYBEgNQ66Sg4Ur6pQ2gwt5umKF2ztwzsQaTtRNqDSHsS2UXujpECEf9xrXkshRJ_1b1rHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307304887</pqid></control><display><type>article</type><title>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Hellfeld, Daniel ; Barton, Paul ; Gunter, Donald ; Haefner, Andrew ; Mihailescu, Lucian ; Vetter, Kai</creator><creatorcontrib>Hellfeld, Daniel ; Barton, Paul ; Gunter, Donald ; Haefner, Andrew ; Mihailescu, Lucian ; Vetter, Kai ; Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</creatorcontrib><description>The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2019.2939948</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D gamma-ray imaging ; Algorithms ; Cadmium zinc tellurides ; Cameras ; Contamination ; Detectors ; Gamma ray detectors ; Gamma rays ; Germanium ; Graphics processing units ; Image processing ; Image reconstruction ; Imaging ; Medical imaging ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Position measurement ; Radiation shielding ; Radioactive pollution ; Radioisotopes ; Real time ; real-time imaging ; Real-time systems ; scene data fusion ; scene data fusion (SDF) ; Security ; spherical active coded mask ; Three-dimensional displays</subject><ispartof>IEEE transactions on nuclear science, 2019-10, Vol.66 (10), p.2252-2260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</citedby><cites>FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</cites><orcidid>0000-0001-6252-2929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8826435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1562118$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hellfeld, Daniel</creatorcontrib><creatorcontrib>Barton, Paul</creatorcontrib><creatorcontrib>Gunter, Donald</creatorcontrib><creatorcontrib>Haefner, Andrew</creatorcontrib><creatorcontrib>Mihailescu, Lucian</creatorcontrib><creatorcontrib>Vetter, Kai</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</creatorcontrib><title>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.</description><subject>3D gamma-ray imaging</subject><subject>Algorithms</subject><subject>Cadmium zinc tellurides</subject><subject>Cameras</subject><subject>Contamination</subject><subject>Detectors</subject><subject>Gamma ray detectors</subject><subject>Gamma rays</subject><subject>Germanium</subject><subject>Graphics processing units</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Medical imaging</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Position measurement</subject><subject>Radiation shielding</subject><subject>Radioactive pollution</subject><subject>Radioisotopes</subject><subject>Real time</subject><subject>real-time imaging</subject><subject>Real-time systems</subject><subject>scene data fusion</subject><subject>scene data fusion (SDF)</subject><subject>Security</subject><subject>spherical active coded mask</subject><subject>Three-dimensional displays</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpug66lvvpIZcFOqrUKrUOt6mExeamqT1Exa6L83pcXV48G5l8sh5JbBgDEwj4v3zwEHZgbcCGOkPiM9ppSmTCX6nPQAmKZGGnNJrkJYda9UoHrkaY5uTRdFidG4QaSzeldUy2jo22KH0ajOMItmLvxE4jmauLJ0dO720Vvplh12TS5ytw54c7p98jV-WYxe6fRj8jYaTqmXPG5pmrFuGHADuUiEyrwHlanUCC1Ziqglylwq5iA2MnNJDtpjynPguYkVMiX65P7YW4e2sMEXLfpvX1cV-tYyFXPGdAc9HKFNU_9uMbR2VW-bqttluYBEgNQ66Sg4Ur6pQ2gwt5umKF2ztwzsQaTtRNqDSHsS2UXujpECEf9xrXkshRJ_1b1rHQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Hellfeld, Daniel</creator><creator>Barton, Paul</creator><creator>Gunter, Donald</creator><creator>Haefner, Andrew</creator><creator>Mihailescu, Lucian</creator><creator>Vetter, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6252-2929</orcidid></search><sort><creationdate>20191001</creationdate><title>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</title><author>Hellfeld, Daniel ; Barton, Paul ; Gunter, Donald ; Haefner, Andrew ; Mihailescu, Lucian ; Vetter, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D gamma-ray imaging</topic><topic>Algorithms</topic><topic>Cadmium zinc tellurides</topic><topic>Cameras</topic><topic>Contamination</topic><topic>Detectors</topic><topic>Gamma ray detectors</topic><topic>Gamma rays</topic><topic>Germanium</topic><topic>Graphics processing units</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Medical imaging</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Position measurement</topic><topic>Radiation shielding</topic><topic>Radioactive pollution</topic><topic>Radioisotopes</topic><topic>Real time</topic><topic>real-time imaging</topic><topic>Real-time systems</topic><topic>scene data fusion</topic><topic>scene data fusion (SDF)</topic><topic>Security</topic><topic>spherical active coded mask</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hellfeld, Daniel</creatorcontrib><creatorcontrib>Barton, Paul</creatorcontrib><creatorcontrib>Gunter, Donald</creatorcontrib><creatorcontrib>Haefner, Andrew</creatorcontrib><creatorcontrib>Mihailescu, Lucian</creatorcontrib><creatorcontrib>Vetter, Kai</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hellfeld, Daniel</au><au>Barton, Paul</au><au>Gunter, Donald</au><au>Haefner, Andrew</au><au>Mihailescu, Lucian</au><au>Vetter, Kai</au><aucorp>Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>66</volume><issue>10</issue><spage>2252</spage><epage>2260</epage><pages>2252-2260</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2019.2939948</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6252-2929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2019-10, Vol.66 (10), p.2252-2260 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2307304887 |
source | IEEE Electronic Library (IEL) |
subjects | 3D gamma-ray imaging Algorithms Cadmium zinc tellurides Cameras Contamination Detectors Gamma ray detectors Gamma rays Germanium Graphics processing units Image processing Image reconstruction Imaging Medical imaging NUCLEAR PHYSICS AND RADIATION PHYSICS Position measurement Radiation shielding Radioactive pollution Radioisotopes Real time real-time imaging Real-time systems scene data fusion scene data fusion (SDF) Security spherical active coded mask Three-dimensional displays |
title | Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Free-Moving%20Active%20Coded%20Mask%203D%20Gamma-Ray%20Imaging&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Hellfeld,%20Daniel&rft.aucorp=Univ.%20of%20California,%20Berkeley,%20CA%20(United%20States).%20Nuclear%20Science%20and%20Security%20Consortium&rft.date=2019-10-01&rft.volume=66&rft.issue=10&rft.spage=2252&rft.epage=2260&rft.pages=2252-2260&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2019.2939948&rft_dat=%3Cproquest_RIE%3E2307304887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307304887&rft_id=info:pmid/&rft_ieee_id=8826435&rfr_iscdi=true |