Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging

The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as han...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2019-10, Vol.66 (10), p.2252-2260
Hauptverfasser: Hellfeld, Daniel, Barton, Paul, Gunter, Donald, Haefner, Andrew, Mihailescu, Lucian, Vetter, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2260
container_issue 10
container_start_page 2252
container_title IEEE transactions on nuclear science
container_volume 66
creator Hellfeld, Daniel
Barton, Paul
Gunter, Donald
Haefner, Andrew
Mihailescu, Lucian
Vetter, Kai
description The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.
doi_str_mv 10.1109/TNS.2019.2939948
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2307304887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826435</ieee_id><sourcerecordid>2307304887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpug66lvvpIZcFOqrUKrUOt6mExeamqT1Exa6L83pcXV48G5l8sh5JbBgDEwj4v3zwEHZgbcCGOkPiM9ppSmTCX6nPQAmKZGGnNJrkJYda9UoHrkaY5uTRdFidG4QaSzeldUy2jo22KH0ajOMItmLvxE4jmauLJ0dO720Vvplh12TS5ytw54c7p98jV-WYxe6fRj8jYaTqmXPG5pmrFuGHADuUiEyrwHlanUCC1Ziqglylwq5iA2MnNJDtpjynPguYkVMiX65P7YW4e2sMEXLfpvX1cV-tYyFXPGdAc9HKFNU_9uMbR2VW-bqttluYBEgNQ66Sg4Ur6pQ2gwt5umKF2ztwzsQaTtRNqDSHsS2UXujpECEf9xrXkshRJ_1b1rHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307304887</pqid></control><display><type>article</type><title>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Hellfeld, Daniel ; Barton, Paul ; Gunter, Donald ; Haefner, Andrew ; Mihailescu, Lucian ; Vetter, Kai</creator><creatorcontrib>Hellfeld, Daniel ; Barton, Paul ; Gunter, Donald ; Haefner, Andrew ; Mihailescu, Lucian ; Vetter, Kai ; Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</creatorcontrib><description>The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2019.2939948</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D gamma-ray imaging ; Algorithms ; Cadmium zinc tellurides ; Cameras ; Contamination ; Detectors ; Gamma ray detectors ; Gamma rays ; Germanium ; Graphics processing units ; Image processing ; Image reconstruction ; Imaging ; Medical imaging ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Position measurement ; Radiation shielding ; Radioactive pollution ; Radioisotopes ; Real time ; real-time imaging ; Real-time systems ; scene data fusion ; scene data fusion (SDF) ; Security ; spherical active coded mask ; Three-dimensional displays</subject><ispartof>IEEE transactions on nuclear science, 2019-10, Vol.66 (10), p.2252-2260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</citedby><cites>FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</cites><orcidid>0000-0001-6252-2929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8826435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1562118$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hellfeld, Daniel</creatorcontrib><creatorcontrib>Barton, Paul</creatorcontrib><creatorcontrib>Gunter, Donald</creatorcontrib><creatorcontrib>Haefner, Andrew</creatorcontrib><creatorcontrib>Mihailescu, Lucian</creatorcontrib><creatorcontrib>Vetter, Kai</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</creatorcontrib><title>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.</description><subject>3D gamma-ray imaging</subject><subject>Algorithms</subject><subject>Cadmium zinc tellurides</subject><subject>Cameras</subject><subject>Contamination</subject><subject>Detectors</subject><subject>Gamma ray detectors</subject><subject>Gamma rays</subject><subject>Germanium</subject><subject>Graphics processing units</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Medical imaging</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Position measurement</subject><subject>Radiation shielding</subject><subject>Radioactive pollution</subject><subject>Radioisotopes</subject><subject>Real time</subject><subject>real-time imaging</subject><subject>Real-time systems</subject><subject>scene data fusion</subject><subject>scene data fusion (SDF)</subject><subject>Security</subject><subject>spherical active coded mask</subject><subject>Three-dimensional displays</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpug66lvvpIZcFOqrUKrUOt6mExeamqT1Exa6L83pcXV48G5l8sh5JbBgDEwj4v3zwEHZgbcCGOkPiM9ppSmTCX6nPQAmKZGGnNJrkJYda9UoHrkaY5uTRdFidG4QaSzeldUy2jo22KH0ajOMItmLvxE4jmauLJ0dO720Vvplh12TS5ytw54c7p98jV-WYxe6fRj8jYaTqmXPG5pmrFuGHADuUiEyrwHlanUCC1Ziqglylwq5iA2MnNJDtpjynPguYkVMiX65P7YW4e2sMEXLfpvX1cV-tYyFXPGdAc9HKFNU_9uMbR2VW-bqttluYBEgNQ66Sg4Ur6pQ2gwt5umKF2ztwzsQaTtRNqDSHsS2UXujpECEf9xrXkshRJ_1b1rHQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Hellfeld, Daniel</creator><creator>Barton, Paul</creator><creator>Gunter, Donald</creator><creator>Haefner, Andrew</creator><creator>Mihailescu, Lucian</creator><creator>Vetter, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6252-2929</orcidid></search><sort><creationdate>20191001</creationdate><title>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</title><author>Hellfeld, Daniel ; Barton, Paul ; Gunter, Donald ; Haefner, Andrew ; Mihailescu, Lucian ; Vetter, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-bd10190290f3735dcc05d5b93841bee84e4f451a0694da7f08ceb2f02f965e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D gamma-ray imaging</topic><topic>Algorithms</topic><topic>Cadmium zinc tellurides</topic><topic>Cameras</topic><topic>Contamination</topic><topic>Detectors</topic><topic>Gamma ray detectors</topic><topic>Gamma rays</topic><topic>Germanium</topic><topic>Graphics processing units</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Medical imaging</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Position measurement</topic><topic>Radiation shielding</topic><topic>Radioactive pollution</topic><topic>Radioisotopes</topic><topic>Real time</topic><topic>real-time imaging</topic><topic>Real-time systems</topic><topic>scene data fusion</topic><topic>scene data fusion (SDF)</topic><topic>Security</topic><topic>spherical active coded mask</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hellfeld, Daniel</creatorcontrib><creatorcontrib>Barton, Paul</creatorcontrib><creatorcontrib>Gunter, Donald</creatorcontrib><creatorcontrib>Haefner, Andrew</creatorcontrib><creatorcontrib>Mihailescu, Lucian</creatorcontrib><creatorcontrib>Vetter, Kai</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hellfeld, Daniel</au><au>Barton, Paul</au><au>Gunter, Donald</au><au>Haefner, Andrew</au><au>Mihailescu, Lucian</au><au>Vetter, Kai</au><aucorp>Univ. of California, Berkeley, CA (United States). Nuclear Science and Security Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>66</volume><issue>10</issue><spage>2252</spage><epage>2260</epage><pages>2252-2260</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The ability to localize and map the distribution of gamma-ray emitting radionuclides in 3D has applications ranging from medical imaging to nuclear security. In the case of radiological source search and nuclear contamination remediation, the deployment of freely moving detection systems such as handheld instruments or ground/aerial-based vehicles is critical in overcoming the inverse square law and complex shielding scenarios. Using contextual sensors, these systems can simultaneously generate 3D maps of the surrounding environment and track the position and orientation of the gamma-ray sensitive detectors in that environment. The fusion of contextual scene data and gamma-ray detector data to facilitate real-time 3D gamma-ray image reconstruction has been demonstrated with mobile high purity germanium (HPGe) and CdZnTe-based Compton cameras for gamma-ray energies ranging from a few hundred keV to several MeV. Here we apply this approach for lower energy (50-400 keV) gamma rays, using a handheld CdZnTe-based omnidirectional imaging system and an active coded mask imaging modality. We present our approach to real-time reconstruction using a scene-data-constrained graphics processing unit (GPU)-accelerated list-mode maximum likelihood expectation maximization (MLEM) algorithm and show results from several measurements in the lab and in the field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2019.2939948</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6252-2929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2019-10, Vol.66 (10), p.2252-2260
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_2307304887
source IEEE Electronic Library (IEL)
subjects 3D gamma-ray imaging
Algorithms
Cadmium zinc tellurides
Cameras
Contamination
Detectors
Gamma ray detectors
Gamma rays
Germanium
Graphics processing units
Image processing
Image reconstruction
Imaging
Medical imaging
NUCLEAR PHYSICS AND RADIATION PHYSICS
Position measurement
Radiation shielding
Radioactive pollution
Radioisotopes
Real time
real-time imaging
Real-time systems
scene data fusion
scene data fusion (SDF)
Security
spherical active coded mask
Three-dimensional displays
title Real-Time Free-Moving Active Coded Mask 3D Gamma-Ray Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Free-Moving%20Active%20Coded%20Mask%203D%20Gamma-Ray%20Imaging&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Hellfeld,%20Daniel&rft.aucorp=Univ.%20of%20California,%20Berkeley,%20CA%20(United%20States).%20Nuclear%20Science%20and%20Security%20Consortium&rft.date=2019-10-01&rft.volume=66&rft.issue=10&rft.spage=2252&rft.epage=2260&rft.pages=2252-2260&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2019.2939948&rft_dat=%3Cproquest_RIE%3E2307304887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307304887&rft_id=info:pmid/&rft_ieee_id=8826435&rfr_iscdi=true