A proposed variable parameter control chart for monitoring the multivariate coefficient of variation
An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2019-11, Vol.35 (7), p.2442-2461 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2461 |
---|---|
container_issue | 7 |
container_start_page | 2442 |
container_title | Quality and reliability engineering international |
container_volume | 35 |
creator | Chew, XinYing Khoo, Michael Boon Chong Khaw, Khai Wah Yeong, Wai Chung Chong, Zhi Lin |
description | An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart. |
doi_str_mv | 10.1002/qre.2536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307300221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307300221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs4p-CcEvHjpfEm6Nj2OMX_AQBQ9h7R9cRlt06WZsv_ebPXq6V0-7_t4X0JuGcwYAH_YeZzxucjOyIRBUSQsE_KcTCBPZSKB5Zfkahi2ABEXckLqBe29692ANf3W3uqyQdprr1sM6GnluuBdQ6uN9oEa52nrOhuct90XDRuk7b4J9rQYMGo0xlYWu0CdGfOCdd01uTC6GfDmb07J5-PqY_mcrF-fXpaLdVKJlGVJaUqRA5jSANepQQky0zwrpcA0ZZhq5HMjMihFHKxAVnPgdS45qwqW61pMyd2YG1_a7XEIauv2vosnFReQi9gPZ1Hdj6rybhg8GtV722p_UAzUsUMVO1THDiNNRvpjGzz869Tb--rkfwEF8HPe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307300221</pqid></control><display><type>article</type><title>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chew, XinYing ; Khoo, Michael Boon Chong ; Khaw, Khai Wah ; Yeong, Wai Chung ; Chong, Zhi Lin</creator><creatorcontrib>Chew, XinYing ; Khoo, Michael Boon Chong ; Khaw, Khai Wah ; Yeong, Wai Chung ; Chong, Zhi Lin</creatorcontrib><description>An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2536</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; average time to signal ; Coefficient of variation ; Control charts ; expected average time to signal ; Markov chain ; Markov chains ; Monitoring ; Multivariate analysis ; multivariate coefficient of variation ; Parameters ; Standard deviation ; variable parameters</subject><ispartof>Quality and reliability engineering international, 2019-11, Vol.35 (7), p.2442-2461</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</citedby><cites>FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</cites><orcidid>0000-0002-3245-1127 ; 0000-0003-2646-6477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2536$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2536$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chew, XinYing</creatorcontrib><creatorcontrib>Khoo, Michael Boon Chong</creatorcontrib><creatorcontrib>Khaw, Khai Wah</creatorcontrib><creatorcontrib>Yeong, Wai Chung</creatorcontrib><creatorcontrib>Chong, Zhi Lin</creatorcontrib><title>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</title><title>Quality and reliability engineering international</title><description>An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.</description><subject>Algorithms</subject><subject>average time to signal</subject><subject>Coefficient of variation</subject><subject>Control charts</subject><subject>expected average time to signal</subject><subject>Markov chain</subject><subject>Markov chains</subject><subject>Monitoring</subject><subject>Multivariate analysis</subject><subject>multivariate coefficient of variation</subject><subject>Parameters</subject><subject>Standard deviation</subject><subject>variable parameters</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs4p-CcEvHjpfEm6Nj2OMX_AQBQ9h7R9cRlt06WZsv_ebPXq6V0-7_t4X0JuGcwYAH_YeZzxucjOyIRBUSQsE_KcTCBPZSKB5Zfkahi2ABEXckLqBe29692ANf3W3uqyQdprr1sM6GnluuBdQ6uN9oEa52nrOhuct90XDRuk7b4J9rQYMGo0xlYWu0CdGfOCdd01uTC6GfDmb07J5-PqY_mcrF-fXpaLdVKJlGVJaUqRA5jSANepQQky0zwrpcA0ZZhq5HMjMihFHKxAVnPgdS45qwqW61pMyd2YG1_a7XEIauv2vosnFReQi9gPZ1Hdj6rybhg8GtV722p_UAzUsUMVO1THDiNNRvpjGzz869Tb--rkfwEF8HPe</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Chew, XinYing</creator><creator>Khoo, Michael Boon Chong</creator><creator>Khaw, Khai Wah</creator><creator>Yeong, Wai Chung</creator><creator>Chong, Zhi Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-3245-1127</orcidid><orcidid>https://orcid.org/0000-0003-2646-6477</orcidid></search><sort><creationdate>201911</creationdate><title>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</title><author>Chew, XinYing ; Khoo, Michael Boon Chong ; Khaw, Khai Wah ; Yeong, Wai Chung ; Chong, Zhi Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>average time to signal</topic><topic>Coefficient of variation</topic><topic>Control charts</topic><topic>expected average time to signal</topic><topic>Markov chain</topic><topic>Markov chains</topic><topic>Monitoring</topic><topic>Multivariate analysis</topic><topic>multivariate coefficient of variation</topic><topic>Parameters</topic><topic>Standard deviation</topic><topic>variable parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chew, XinYing</creatorcontrib><creatorcontrib>Khoo, Michael Boon Chong</creatorcontrib><creatorcontrib>Khaw, Khai Wah</creatorcontrib><creatorcontrib>Yeong, Wai Chung</creatorcontrib><creatorcontrib>Chong, Zhi Lin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chew, XinYing</au><au>Khoo, Michael Boon Chong</au><au>Khaw, Khai Wah</au><au>Yeong, Wai Chung</au><au>Chong, Zhi Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>7</issue><spage>2442</spage><epage>2461</epage><pages>2442-2461</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2536</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3245-1127</orcidid><orcidid>https://orcid.org/0000-0003-2646-6477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2019-11, Vol.35 (7), p.2442-2461 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2307300221 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms average time to signal Coefficient of variation Control charts expected average time to signal Markov chain Markov chains Monitoring Multivariate analysis multivariate coefficient of variation Parameters Standard deviation variable parameters |
title | A proposed variable parameter control chart for monitoring the multivariate coefficient of variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proposed%20variable%20parameter%20control%20chart%20for%20monitoring%20the%20multivariate%20coefficient%20of%20variation&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Chew,%20XinYing&rft.date=2019-11&rft.volume=35&rft.issue=7&rft.spage=2442&rft.epage=2461&rft.pages=2442-2461&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2536&rft_dat=%3Cproquest_cross%3E2307300221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307300221&rft_id=info:pmid/&rfr_iscdi=true |