A proposed variable parameter control chart for monitoring the multivariate coefficient of variation

An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2019-11, Vol.35 (7), p.2442-2461
Hauptverfasser: Chew, XinYing, Khoo, Michael Boon Chong, Khaw, Khai Wah, Yeong, Wai Chung, Chong, Zhi Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2461
container_issue 7
container_start_page 2442
container_title Quality and reliability engineering international
container_volume 35
creator Chew, XinYing
Khoo, Michael Boon Chong
Khaw, Khai Wah
Yeong, Wai Chung
Chong, Zhi Lin
description An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.
doi_str_mv 10.1002/qre.2536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307300221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307300221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs4p-CcEvHjpfEm6Nj2OMX_AQBQ9h7R9cRlt06WZsv_ebPXq6V0-7_t4X0JuGcwYAH_YeZzxucjOyIRBUSQsE_KcTCBPZSKB5Zfkahi2ABEXckLqBe29692ANf3W3uqyQdprr1sM6GnluuBdQ6uN9oEa52nrOhuct90XDRuk7b4J9rQYMGo0xlYWu0CdGfOCdd01uTC6GfDmb07J5-PqY_mcrF-fXpaLdVKJlGVJaUqRA5jSANepQQky0zwrpcA0ZZhq5HMjMihFHKxAVnPgdS45qwqW61pMyd2YG1_a7XEIauv2vosnFReQi9gPZ1Hdj6rybhg8GtV722p_UAzUsUMVO1THDiNNRvpjGzz869Tb--rkfwEF8HPe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307300221</pqid></control><display><type>article</type><title>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chew, XinYing ; Khoo, Michael Boon Chong ; Khaw, Khai Wah ; Yeong, Wai Chung ; Chong, Zhi Lin</creator><creatorcontrib>Chew, XinYing ; Khoo, Michael Boon Chong ; Khaw, Khai Wah ; Yeong, Wai Chung ; Chong, Zhi Lin</creatorcontrib><description>An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2536</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; average time to signal ; Coefficient of variation ; Control charts ; expected average time to signal ; Markov chain ; Markov chains ; Monitoring ; Multivariate analysis ; multivariate coefficient of variation ; Parameters ; Standard deviation ; variable parameters</subject><ispartof>Quality and reliability engineering international, 2019-11, Vol.35 (7), p.2442-2461</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</citedby><cites>FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</cites><orcidid>0000-0002-3245-1127 ; 0000-0003-2646-6477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2536$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2536$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chew, XinYing</creatorcontrib><creatorcontrib>Khoo, Michael Boon Chong</creatorcontrib><creatorcontrib>Khaw, Khai Wah</creatorcontrib><creatorcontrib>Yeong, Wai Chung</creatorcontrib><creatorcontrib>Chong, Zhi Lin</creatorcontrib><title>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</title><title>Quality and reliability engineering international</title><description>An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.</description><subject>Algorithms</subject><subject>average time to signal</subject><subject>Coefficient of variation</subject><subject>Control charts</subject><subject>expected average time to signal</subject><subject>Markov chain</subject><subject>Markov chains</subject><subject>Monitoring</subject><subject>Multivariate analysis</subject><subject>multivariate coefficient of variation</subject><subject>Parameters</subject><subject>Standard deviation</subject><subject>variable parameters</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs4p-CcEvHjpfEm6Nj2OMX_AQBQ9h7R9cRlt06WZsv_ebPXq6V0-7_t4X0JuGcwYAH_YeZzxucjOyIRBUSQsE_KcTCBPZSKB5Zfkahi2ABEXckLqBe29692ANf3W3uqyQdprr1sM6GnluuBdQ6uN9oEa52nrOhuct90XDRuk7b4J9rQYMGo0xlYWu0CdGfOCdd01uTC6GfDmb07J5-PqY_mcrF-fXpaLdVKJlGVJaUqRA5jSANepQQky0zwrpcA0ZZhq5HMjMihFHKxAVnPgdS45qwqW61pMyd2YG1_a7XEIauv2vosnFReQi9gPZ1Hdj6rybhg8GtV722p_UAzUsUMVO1THDiNNRvpjGzz869Tb--rkfwEF8HPe</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Chew, XinYing</creator><creator>Khoo, Michael Boon Chong</creator><creator>Khaw, Khai Wah</creator><creator>Yeong, Wai Chung</creator><creator>Chong, Zhi Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-3245-1127</orcidid><orcidid>https://orcid.org/0000-0003-2646-6477</orcidid></search><sort><creationdate>201911</creationdate><title>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</title><author>Chew, XinYing ; Khoo, Michael Boon Chong ; Khaw, Khai Wah ; Yeong, Wai Chung ; Chong, Zhi Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3416-bfb3700fbf02a4fe8086a26b83e441e4ae25f360b35f319e1d202d7821c917ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>average time to signal</topic><topic>Coefficient of variation</topic><topic>Control charts</topic><topic>expected average time to signal</topic><topic>Markov chain</topic><topic>Markov chains</topic><topic>Monitoring</topic><topic>Multivariate analysis</topic><topic>multivariate coefficient of variation</topic><topic>Parameters</topic><topic>Standard deviation</topic><topic>variable parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chew, XinYing</creatorcontrib><creatorcontrib>Khoo, Michael Boon Chong</creatorcontrib><creatorcontrib>Khaw, Khai Wah</creatorcontrib><creatorcontrib>Yeong, Wai Chung</creatorcontrib><creatorcontrib>Chong, Zhi Lin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chew, XinYing</au><au>Khoo, Michael Boon Chong</au><au>Khaw, Khai Wah</au><au>Yeong, Wai Chung</au><au>Chong, Zhi Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proposed variable parameter control chart for monitoring the multivariate coefficient of variation</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>7</issue><spage>2442</spage><epage>2461</epage><pages>2442-2461</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2536</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3245-1127</orcidid><orcidid>https://orcid.org/0000-0003-2646-6477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2019-11, Vol.35 (7), p.2442-2461
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2307300221
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
average time to signal
Coefficient of variation
Control charts
expected average time to signal
Markov chain
Markov chains
Monitoring
Multivariate analysis
multivariate coefficient of variation
Parameters
Standard deviation
variable parameters
title A proposed variable parameter control chart for monitoring the multivariate coefficient of variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proposed%20variable%20parameter%20control%20chart%20for%20monitoring%20the%20multivariate%20coefficient%20of%20variation&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Chew,%20XinYing&rft.date=2019-11&rft.volume=35&rft.issue=7&rft.spage=2442&rft.epage=2461&rft.pages=2442-2461&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2536&rft_dat=%3Cproquest_cross%3E2307300221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307300221&rft_id=info:pmid/&rfr_iscdi=true