Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions
Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2019-10, Vol.50 (10), p.1485-1491 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1491 |
---|---|
container_issue | 10 |
container_start_page | 1485 |
container_title | Journal of Raman spectroscopy |
container_volume | 50 |
creator | Nam, Jihye Duy, Pham Khac Seo, Chunhee Eom, Sangwon Minh, Duong Nguyen Lee, Jisun Sim, Jae Hyun Chung, Hoeil Kang, Youngjong |
description | Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions.
SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods. |
doi_str_mv | 10.1002/jrs.5654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2307297246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307297246</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2584-68a191c0dc2eef2d2753924175e404e7c9cc340eb4ce6fc54283bdf144e537693</originalsourceid><addsrcrecordid>eNotkM1Kw0AcxBdRsFbBRwh4Truf2eyxFD8pFFo9L9vNPzUl3Y27iZKbj-Az-iSmtqdhmGEGfgjdEjwhGNPpLsSJyAQ_QyOClUy5EOIcjTCTMsU8zy7RVYw7jLFSGRmh7dz7BoJpq09IYhdKY-H3-wfcu3EWimRl9sYlsQHbBh-tb_rklO3BtUnlklmXOON88MV0XS3pv2lMaCtbD4u-7trKu3iNLkpTR7g56Ri9Pdy_zp_SxfLxeT5bpFsqcp5muSGKWFxYClDSgkrBFOVECuCYg7TKWsYxbLiFrLSC05xtipJwDoLJTLExujvuNsF_dBBbvfNdcMOlpgxLqiTl2dBKj62vqoZeN6Ham9BrgvWBoR4Y6gND_bJaH5T9Ae_daHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307297246</pqid></control><display><type>article</type><title>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Jihye ; Duy, Pham Khac ; Seo, Chunhee ; Eom, Sangwon ; Minh, Duong Nguyen ; Lee, Jisun ; Sim, Jae Hyun ; Chung, Hoeil ; Kang, Youngjong</creator><creatorcontrib>Nam, Jihye ; Duy, Pham Khac ; Seo, Chunhee ; Eom, Sangwon ; Minh, Duong Nguyen ; Lee, Jisun ; Sim, Jae Hyun ; Chung, Hoeil ; Kang, Youngjong</creatorcontrib><description>Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions.
SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5654</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>dielectric nanoparticles ; Dielectric strength ; Gold ; liquid‐state SERS ; Metal surfaces ; metal‐dielectric coupling ; Nanoparticles ; Nanorods ; Raman spectroscopy ; Resonance ; Rhodamine 6G ; SERS enhancement ; Silicon dioxide ; Spectroscopy ; Spectrum analysis ; volume exclusion</subject><ispartof>Journal of Raman spectroscopy, 2019-10, Vol.50 (10), p.1485-1491</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5298-9189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Nam, Jihye</creatorcontrib><creatorcontrib>Duy, Pham Khac</creatorcontrib><creatorcontrib>Seo, Chunhee</creatorcontrib><creatorcontrib>Eom, Sangwon</creatorcontrib><creatorcontrib>Minh, Duong Nguyen</creatorcontrib><creatorcontrib>Lee, Jisun</creatorcontrib><creatorcontrib>Sim, Jae Hyun</creatorcontrib><creatorcontrib>Chung, Hoeil</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><title>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</title><title>Journal of Raman spectroscopy</title><description>Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions.
SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.</description><subject>dielectric nanoparticles</subject><subject>Dielectric strength</subject><subject>Gold</subject><subject>liquid‐state SERS</subject><subject>Metal surfaces</subject><subject>metal‐dielectric coupling</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Raman spectroscopy</subject><subject>Resonance</subject><subject>Rhodamine 6G</subject><subject>SERS enhancement</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>volume exclusion</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AcxBdRsFbBRwh4Truf2eyxFD8pFFo9L9vNPzUl3Y27iZKbj-Az-iSmtqdhmGEGfgjdEjwhGNPpLsSJyAQ_QyOClUy5EOIcjTCTMsU8zy7RVYw7jLFSGRmh7dz7BoJpq09IYhdKY-H3-wfcu3EWimRl9sYlsQHbBh-tb_rklO3BtUnlklmXOON88MV0XS3pv2lMaCtbD4u-7trKu3iNLkpTR7g56Ri9Pdy_zp_SxfLxeT5bpFsqcp5muSGKWFxYClDSgkrBFOVECuCYg7TKWsYxbLiFrLSC05xtipJwDoLJTLExujvuNsF_dBBbvfNdcMOlpgxLqiTl2dBKj62vqoZeN6Ham9BrgvWBoR4Y6gND_bJaH5T9Ae_daHg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Nam, Jihye</creator><creator>Duy, Pham Khac</creator><creator>Seo, Chunhee</creator><creator>Eom, Sangwon</creator><creator>Minh, Duong Nguyen</creator><creator>Lee, Jisun</creator><creator>Sim, Jae Hyun</creator><creator>Chung, Hoeil</creator><creator>Kang, Youngjong</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-5298-9189</orcidid></search><sort><creationdate>201910</creationdate><title>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</title><author>Nam, Jihye ; Duy, Pham Khac ; Seo, Chunhee ; Eom, Sangwon ; Minh, Duong Nguyen ; Lee, Jisun ; Sim, Jae Hyun ; Chung, Hoeil ; Kang, Youngjong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2584-68a191c0dc2eef2d2753924175e404e7c9cc340eb4ce6fc54283bdf144e537693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>dielectric nanoparticles</topic><topic>Dielectric strength</topic><topic>Gold</topic><topic>liquid‐state SERS</topic><topic>Metal surfaces</topic><topic>metal‐dielectric coupling</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Raman spectroscopy</topic><topic>Resonance</topic><topic>Rhodamine 6G</topic><topic>SERS enhancement</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>volume exclusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Jihye</creatorcontrib><creatorcontrib>Duy, Pham Khac</creatorcontrib><creatorcontrib>Seo, Chunhee</creatorcontrib><creatorcontrib>Eom, Sangwon</creatorcontrib><creatorcontrib>Minh, Duong Nguyen</creatorcontrib><creatorcontrib>Lee, Jisun</creatorcontrib><creatorcontrib>Sim, Jae Hyun</creatorcontrib><creatorcontrib>Chung, Hoeil</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Jihye</au><au>Duy, Pham Khac</au><au>Seo, Chunhee</au><au>Eom, Sangwon</au><au>Minh, Duong Nguyen</au><au>Lee, Jisun</au><au>Sim, Jae Hyun</au><au>Chung, Hoeil</au><au>Kang, Youngjong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2019-10</date><risdate>2019</risdate><volume>50</volume><issue>10</issue><spage>1485</spage><epage>1491</epage><pages>1485-1491</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions.
SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5654</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5298-9189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2019-10, Vol.50 (10), p.1485-1491 |
issn | 0377-0486 1097-4555 |
language | eng |
recordid | cdi_proquest_journals_2307297246 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | dielectric nanoparticles Dielectric strength Gold liquid‐state SERS Metal surfaces metal‐dielectric coupling Nanoparticles Nanorods Raman spectroscopy Resonance Rhodamine 6G SERS enhancement Silicon dioxide Spectroscopy Spectrum analysis volume exclusion |
title | Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20surface%E2%80%90enhanced%20Raman%20spectroscopy%20enhancement%20in%20Au%20nanorod/SiO2%20nanoparticle%20solutions&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Nam,%20Jihye&rft.date=2019-10&rft.volume=50&rft.issue=10&rft.spage=1485&rft.epage=1491&rft.pages=1485-1491&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5654&rft_dat=%3Cproquest_wiley%3E2307297246%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307297246&rft_id=info:pmid/&rfr_iscdi=true |