Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions

Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2019-10, Vol.50 (10), p.1485-1491
Hauptverfasser: Nam, Jihye, Duy, Pham Khac, Seo, Chunhee, Eom, Sangwon, Minh, Duong Nguyen, Lee, Jisun, Sim, Jae Hyun, Chung, Hoeil, Kang, Youngjong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1491
container_issue 10
container_start_page 1485
container_title Journal of Raman spectroscopy
container_volume 50
creator Nam, Jihye
Duy, Pham Khac
Seo, Chunhee
Eom, Sangwon
Minh, Duong Nguyen
Lee, Jisun
Sim, Jae Hyun
Chung, Hoeil
Kang, Youngjong
description Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions. SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.
doi_str_mv 10.1002/jrs.5654
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2307297246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307297246</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2584-68a191c0dc2eef2d2753924175e404e7c9cc340eb4ce6fc54283bdf144e537693</originalsourceid><addsrcrecordid>eNotkM1Kw0AcxBdRsFbBRwh4Truf2eyxFD8pFFo9L9vNPzUl3Y27iZKbj-Az-iSmtqdhmGEGfgjdEjwhGNPpLsSJyAQ_QyOClUy5EOIcjTCTMsU8zy7RVYw7jLFSGRmh7dz7BoJpq09IYhdKY-H3-wfcu3EWimRl9sYlsQHbBh-tb_rklO3BtUnlklmXOON88MV0XS3pv2lMaCtbD4u-7trKu3iNLkpTR7g56Ri9Pdy_zp_SxfLxeT5bpFsqcp5muSGKWFxYClDSgkrBFOVECuCYg7TKWsYxbLiFrLSC05xtipJwDoLJTLExujvuNsF_dBBbvfNdcMOlpgxLqiTl2dBKj62vqoZeN6Ham9BrgvWBoR4Y6gND_bJaH5T9Ae_daHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307297246</pqid></control><display><type>article</type><title>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Jihye ; Duy, Pham Khac ; Seo, Chunhee ; Eom, Sangwon ; Minh, Duong Nguyen ; Lee, Jisun ; Sim, Jae Hyun ; Chung, Hoeil ; Kang, Youngjong</creator><creatorcontrib>Nam, Jihye ; Duy, Pham Khac ; Seo, Chunhee ; Eom, Sangwon ; Minh, Duong Nguyen ; Lee, Jisun ; Sim, Jae Hyun ; Chung, Hoeil ; Kang, Youngjong</creatorcontrib><description>Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions. SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5654</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>dielectric nanoparticles ; Dielectric strength ; Gold ; liquid‐state SERS ; Metal surfaces ; metal‐dielectric coupling ; Nanoparticles ; Nanorods ; Raman spectroscopy ; Resonance ; Rhodamine 6G ; SERS enhancement ; Silicon dioxide ; Spectroscopy ; Spectrum analysis ; volume exclusion</subject><ispartof>Journal of Raman spectroscopy, 2019-10, Vol.50 (10), p.1485-1491</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5298-9189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Nam, Jihye</creatorcontrib><creatorcontrib>Duy, Pham Khac</creatorcontrib><creatorcontrib>Seo, Chunhee</creatorcontrib><creatorcontrib>Eom, Sangwon</creatorcontrib><creatorcontrib>Minh, Duong Nguyen</creatorcontrib><creatorcontrib>Lee, Jisun</creatorcontrib><creatorcontrib>Sim, Jae Hyun</creatorcontrib><creatorcontrib>Chung, Hoeil</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><title>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</title><title>Journal of Raman spectroscopy</title><description>Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions. SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.</description><subject>dielectric nanoparticles</subject><subject>Dielectric strength</subject><subject>Gold</subject><subject>liquid‐state SERS</subject><subject>Metal surfaces</subject><subject>metal‐dielectric coupling</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Raman spectroscopy</subject><subject>Resonance</subject><subject>Rhodamine 6G</subject><subject>SERS enhancement</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>volume exclusion</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AcxBdRsFbBRwh4Truf2eyxFD8pFFo9L9vNPzUl3Y27iZKbj-Az-iSmtqdhmGEGfgjdEjwhGNPpLsSJyAQ_QyOClUy5EOIcjTCTMsU8zy7RVYw7jLFSGRmh7dz7BoJpq09IYhdKY-H3-wfcu3EWimRl9sYlsQHbBh-tb_rklO3BtUnlklmXOON88MV0XS3pv2lMaCtbD4u-7trKu3iNLkpTR7g56Ri9Pdy_zp_SxfLxeT5bpFsqcp5muSGKWFxYClDSgkrBFOVECuCYg7TKWsYxbLiFrLSC05xtipJwDoLJTLExujvuNsF_dBBbvfNdcMOlpgxLqiTl2dBKj62vqoZeN6Ham9BrgvWBoR4Y6gND_bJaH5T9Ae_daHg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Nam, Jihye</creator><creator>Duy, Pham Khac</creator><creator>Seo, Chunhee</creator><creator>Eom, Sangwon</creator><creator>Minh, Duong Nguyen</creator><creator>Lee, Jisun</creator><creator>Sim, Jae Hyun</creator><creator>Chung, Hoeil</creator><creator>Kang, Youngjong</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-5298-9189</orcidid></search><sort><creationdate>201910</creationdate><title>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</title><author>Nam, Jihye ; Duy, Pham Khac ; Seo, Chunhee ; Eom, Sangwon ; Minh, Duong Nguyen ; Lee, Jisun ; Sim, Jae Hyun ; Chung, Hoeil ; Kang, Youngjong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2584-68a191c0dc2eef2d2753924175e404e7c9cc340eb4ce6fc54283bdf144e537693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>dielectric nanoparticles</topic><topic>Dielectric strength</topic><topic>Gold</topic><topic>liquid‐state SERS</topic><topic>Metal surfaces</topic><topic>metal‐dielectric coupling</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Raman spectroscopy</topic><topic>Resonance</topic><topic>Rhodamine 6G</topic><topic>SERS enhancement</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>volume exclusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Jihye</creatorcontrib><creatorcontrib>Duy, Pham Khac</creatorcontrib><creatorcontrib>Seo, Chunhee</creatorcontrib><creatorcontrib>Eom, Sangwon</creatorcontrib><creatorcontrib>Minh, Duong Nguyen</creatorcontrib><creatorcontrib>Lee, Jisun</creatorcontrib><creatorcontrib>Sim, Jae Hyun</creatorcontrib><creatorcontrib>Chung, Hoeil</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Jihye</au><au>Duy, Pham Khac</au><au>Seo, Chunhee</au><au>Eom, Sangwon</au><au>Minh, Duong Nguyen</au><au>Lee, Jisun</au><au>Sim, Jae Hyun</au><au>Chung, Hoeil</au><au>Kang, Youngjong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2019-10</date><risdate>2019</risdate><volume>50</volume><issue>10</issue><spage>1485</spage><epage>1491</epage><pages>1485-1491</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Surface‐enhanced Raman spectroscopy (SERS) signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. Raman signals from the diluted solutions are very weak even if they are amplified by SERS using Au nanorods. When SiO2 nanoparticles are added together with Au nanorods, however, Raman intensity increased by three order comparing with that of system containing only Au nanorods. Finite‐difference time‐domain simulations show that SiO2 nanoparticles exhibit dipolar electric resonance, which is strongly enhanced by interacting with the surface plasmon of Au nanorods. The size and concentration of SiO2 nanoparticles are optimized to 354 nm in diameter and 4.5 vol%. Under the optimized condition, SERS intensity decrease with concentration of analyte (rhodamine 6G or crystal violet) is much slower for the system containing both Au nanorods and SiO2 nanoparticles than that of the system containing only Au nanorods. The detection limit is 10−10 M for both aqueous rhodamine 6G and crystal violet solutions. SERS signals in liquid state are significantly enhanced by utilizing cooperative interaction between metal surface plasmon and dielectric resonance. When SiO2 nanoparticles are added together with Au nanorods, Raman intensity increased by three order comparing with that of system containing only Au nanorods.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5654</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5298-9189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2019-10, Vol.50 (10), p.1485-1491
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_2307297246
source Wiley Online Library Journals Frontfile Complete
subjects dielectric nanoparticles
Dielectric strength
Gold
liquid‐state SERS
Metal surfaces
metal‐dielectric coupling
Nanoparticles
Nanorods
Raman spectroscopy
Resonance
Rhodamine 6G
SERS enhancement
Silicon dioxide
Spectroscopy
Spectrum analysis
volume exclusion
title Cooperative surface‐enhanced Raman spectroscopy enhancement in Au nanorod/SiO2 nanoparticle solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20surface%E2%80%90enhanced%20Raman%20spectroscopy%20enhancement%20in%20Au%20nanorod/SiO2%20nanoparticle%20solutions&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Nam,%20Jihye&rft.date=2019-10&rft.volume=50&rft.issue=10&rft.spage=1485&rft.epage=1491&rft.pages=1485-1491&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5654&rft_dat=%3Cproquest_wiley%3E2307297246%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307297246&rft_id=info:pmid/&rfr_iscdi=true