Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons

The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuzn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to plasma physics (1988) 2019-10, Vol.59 (9), p.n/a
Hauptverfasser: Soltani, H., Mohsenpour, T., Sohbatzadeh, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Contributions to plasma physics (1988)
container_volume 59
creator Soltani, H.
Mohsenpour, T.
Sohbatzadeh, F.
description The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.
doi_str_mv 10.1002/ctpp.201900038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307260662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307260662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhS0EEuFoqS1Rb7C9R-wSRVxSJFKEejVxZoMjZ3djexOFipKS38gvwSEcJdVoNO-90fsIueCszxkTVzq0bV8wrhhjqTwgPZ4LnqRKFoekx2SRJpxl4piceL-IElVkvEfeHqfWrDq0W9q6poU5BFPP6aqDOnRL6htrArgt3cAaPTX1z-Xj9X0J8xqDecEZbS34JdCNCc-0s8FBPDu0MWttfDCaznCONToISNGiDq6pPYU6OhtvvrYzclSB9Xj-PU_J0-3NZHifjB7vHobXo0SnfCCT2UxXiknImZJSyFSJQTYogGmdwxSyPK94nqEGpgTmkGGmVSUx5xJkhkLr9JRc7nNj3djbh3LRdK6OL0uRsoEoWFGIqOrvVdo13jusytaZZQRRclbuaJc72uUv7WhQe8PGWNz-oy6Hk_H4z_sJNL-Kpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307260662</pqid></control><display><type>article</type><title>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</title><source>Wiley Online Library All Journals</source><creator>Soltani, H. ; Mohsenpour, T. ; Sohbatzadeh, F.</creator><creatorcontrib>Soltani, H. ; Mohsenpour, T. ; Sohbatzadeh, F.</creatorcontrib><description>The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.</description><identifier>ISSN: 0863-1042</identifier><identifier>EISSN: 1521-3986</identifier><identifier>DOI: 10.1002/ctpp.201900038</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Acoustic propagation ; Acoustics ; Density ratio ; Electrons ; Hydrodynamic equations ; Ion beams ; Parameters ; Perturbation methods ; Plasma ; Positrons ; Propagation modes ; quantum hydrodynamic ; Relativism ; relativistic degenerate ; Relativistic effects ; Solitary waves ; Velocity ; Wave propagation</subject><ispartof>Contributions to plasma physics (1988), 2019-10, Vol.59 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</citedby><cites>FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fctpp.201900038$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fctpp.201900038$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Soltani, H.</creatorcontrib><creatorcontrib>Mohsenpour, T.</creatorcontrib><creatorcontrib>Sohbatzadeh, F.</creatorcontrib><title>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</title><title>Contributions to plasma physics (1988)</title><description>The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Density ratio</subject><subject>Electrons</subject><subject>Hydrodynamic equations</subject><subject>Ion beams</subject><subject>Parameters</subject><subject>Perturbation methods</subject><subject>Plasma</subject><subject>Positrons</subject><subject>Propagation modes</subject><subject>quantum hydrodynamic</subject><subject>Relativism</subject><subject>relativistic degenerate</subject><subject>Relativistic effects</subject><subject>Solitary waves</subject><subject>Velocity</subject><subject>Wave propagation</subject><issn>0863-1042</issn><issn>1521-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDlPAzEQhS0EEuFoqS1Rb7C9R-wSRVxSJFKEejVxZoMjZ3djexOFipKS38gvwSEcJdVoNO-90fsIueCszxkTVzq0bV8wrhhjqTwgPZ4LnqRKFoekx2SRJpxl4piceL-IElVkvEfeHqfWrDq0W9q6poU5BFPP6aqDOnRL6htrArgt3cAaPTX1z-Xj9X0J8xqDecEZbS34JdCNCc-0s8FBPDu0MWttfDCaznCONToISNGiDq6pPYU6OhtvvrYzclSB9Xj-PU_J0-3NZHifjB7vHobXo0SnfCCT2UxXiknImZJSyFSJQTYogGmdwxSyPK94nqEGpgTmkGGmVSUx5xJkhkLr9JRc7nNj3djbh3LRdK6OL0uRsoEoWFGIqOrvVdo13jusytaZZQRRclbuaJc72uUv7WhQe8PGWNz-oy6Hk_H4z_sJNL-Kpg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Soltani, H.</creator><creator>Mohsenpour, T.</creator><creator>Sohbatzadeh, F.</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201910</creationdate><title>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</title><author>Soltani, H. ; Mohsenpour, T. ; Sohbatzadeh, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Density ratio</topic><topic>Electrons</topic><topic>Hydrodynamic equations</topic><topic>Ion beams</topic><topic>Parameters</topic><topic>Perturbation methods</topic><topic>Plasma</topic><topic>Positrons</topic><topic>Propagation modes</topic><topic>quantum hydrodynamic</topic><topic>Relativism</topic><topic>relativistic degenerate</topic><topic>Relativistic effects</topic><topic>Solitary waves</topic><topic>Velocity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, H.</creatorcontrib><creatorcontrib>Mohsenpour, T.</creatorcontrib><creatorcontrib>Sohbatzadeh, F.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Contributions to plasma physics (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, H.</au><au>Mohsenpour, T.</au><au>Sohbatzadeh, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</atitle><jtitle>Contributions to plasma physics (1988)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>59</volume><issue>9</issue><epage>n/a</epage><issn>0863-1042</issn><eissn>1521-3986</eissn><abstract>The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/ctpp.201900038</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0863-1042
ispartof Contributions to plasma physics (1988), 2019-10, Vol.59 (9), p.n/a
issn 0863-1042
1521-3986
language eng
recordid cdi_proquest_journals_2307260662
source Wiley Online Library All Journals
subjects Acoustic propagation
Acoustics
Density ratio
Electrons
Hydrodynamic equations
Ion beams
Parameters
Perturbation methods
Plasma
Positrons
Propagation modes
quantum hydrodynamic
Relativism
relativistic degenerate
Relativistic effects
Solitary waves
Velocity
Wave propagation
title Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obliquely%20propagating%20quantum%20solitary%20waves%20in%20quantum%E2%80%90magnetized%20plasma%20with%20ultra%E2%80%90relativistic%20degenerate%20electrons%20and%20positrons&rft.jtitle=Contributions%20to%20plasma%20physics%20(1988)&rft.au=Soltani,%20H.&rft.date=2019-10&rft.volume=59&rft.issue=9&rft.epage=n/a&rft.issn=0863-1042&rft.eissn=1521-3986&rft_id=info:doi/10.1002/ctpp.201900038&rft_dat=%3Cproquest_cross%3E2307260662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307260662&rft_id=info:pmid/&rfr_iscdi=true