Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuzn...
Gespeichert in:
Veröffentlicht in: | Contributions to plasma physics (1988) 2019-10, Vol.59 (9), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Contributions to plasma physics (1988) |
container_volume | 59 |
creator | Soltani, H. Mohsenpour, T. Sohbatzadeh, F. |
description | The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves. |
doi_str_mv | 10.1002/ctpp.201900038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307260662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307260662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhS0EEuFoqS1Rb7C9R-wSRVxSJFKEejVxZoMjZ3djexOFipKS38gvwSEcJdVoNO-90fsIueCszxkTVzq0bV8wrhhjqTwgPZ4LnqRKFoekx2SRJpxl4piceL-IElVkvEfeHqfWrDq0W9q6poU5BFPP6aqDOnRL6htrArgt3cAaPTX1z-Xj9X0J8xqDecEZbS34JdCNCc-0s8FBPDu0MWttfDCaznCONToISNGiDq6pPYU6OhtvvrYzclSB9Xj-PU_J0-3NZHifjB7vHobXo0SnfCCT2UxXiknImZJSyFSJQTYogGmdwxSyPK94nqEGpgTmkGGmVSUx5xJkhkLr9JRc7nNj3djbh3LRdK6OL0uRsoEoWFGIqOrvVdo13jusytaZZQRRclbuaJc72uUv7WhQe8PGWNz-oy6Hk_H4z_sJNL-Kpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307260662</pqid></control><display><type>article</type><title>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</title><source>Wiley Online Library All Journals</source><creator>Soltani, H. ; Mohsenpour, T. ; Sohbatzadeh, F.</creator><creatorcontrib>Soltani, H. ; Mohsenpour, T. ; Sohbatzadeh, F.</creatorcontrib><description>The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.</description><identifier>ISSN: 0863-1042</identifier><identifier>EISSN: 1521-3986</identifier><identifier>DOI: 10.1002/ctpp.201900038</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Acoustic propagation ; Acoustics ; Density ratio ; Electrons ; Hydrodynamic equations ; Ion beams ; Parameters ; Perturbation methods ; Plasma ; Positrons ; Propagation modes ; quantum hydrodynamic ; Relativism ; relativistic degenerate ; Relativistic effects ; Solitary waves ; Velocity ; Wave propagation</subject><ispartof>Contributions to plasma physics (1988), 2019-10, Vol.59 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</citedby><cites>FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fctpp.201900038$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fctpp.201900038$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Soltani, H.</creatorcontrib><creatorcontrib>Mohsenpour, T.</creatorcontrib><creatorcontrib>Sohbatzadeh, F.</creatorcontrib><title>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</title><title>Contributions to plasma physics (1988)</title><description>The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.</description><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Density ratio</subject><subject>Electrons</subject><subject>Hydrodynamic equations</subject><subject>Ion beams</subject><subject>Parameters</subject><subject>Perturbation methods</subject><subject>Plasma</subject><subject>Positrons</subject><subject>Propagation modes</subject><subject>quantum hydrodynamic</subject><subject>Relativism</subject><subject>relativistic degenerate</subject><subject>Relativistic effects</subject><subject>Solitary waves</subject><subject>Velocity</subject><subject>Wave propagation</subject><issn>0863-1042</issn><issn>1521-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDlPAzEQhS0EEuFoqS1Rb7C9R-wSRVxSJFKEejVxZoMjZ3djexOFipKS38gvwSEcJdVoNO-90fsIueCszxkTVzq0bV8wrhhjqTwgPZ4LnqRKFoekx2SRJpxl4piceL-IElVkvEfeHqfWrDq0W9q6poU5BFPP6aqDOnRL6htrArgt3cAaPTX1z-Xj9X0J8xqDecEZbS34JdCNCc-0s8FBPDu0MWttfDCaznCONToISNGiDq6pPYU6OhtvvrYzclSB9Xj-PU_J0-3NZHifjB7vHobXo0SnfCCT2UxXiknImZJSyFSJQTYogGmdwxSyPK94nqEGpgTmkGGmVSUx5xJkhkLr9JRc7nNj3djbh3LRdK6OL0uRsoEoWFGIqOrvVdo13jusytaZZQRRclbuaJc72uUv7WhQe8PGWNz-oy6Hk_H4z_sJNL-Kpg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Soltani, H.</creator><creator>Mohsenpour, T.</creator><creator>Sohbatzadeh, F.</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201910</creationdate><title>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</title><author>Soltani, H. ; Mohsenpour, T. ; Sohbatzadeh, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-ddcf908a50988283927476a0cc5aba455f154eca092e5a4e4c9f8e518a84e2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Density ratio</topic><topic>Electrons</topic><topic>Hydrodynamic equations</topic><topic>Ion beams</topic><topic>Parameters</topic><topic>Perturbation methods</topic><topic>Plasma</topic><topic>Positrons</topic><topic>Propagation modes</topic><topic>quantum hydrodynamic</topic><topic>Relativism</topic><topic>relativistic degenerate</topic><topic>Relativistic effects</topic><topic>Solitary waves</topic><topic>Velocity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, H.</creatorcontrib><creatorcontrib>Mohsenpour, T.</creatorcontrib><creatorcontrib>Sohbatzadeh, F.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Contributions to plasma physics (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, H.</au><au>Mohsenpour, T.</au><au>Sohbatzadeh, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons</atitle><jtitle>Contributions to plasma physics (1988)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>59</volume><issue>9</issue><epage>n/a</epage><issn>0863-1042</issn><eissn>1521-3986</eissn><abstract>The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/ctpp.201900038</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0863-1042 |
ispartof | Contributions to plasma physics (1988), 2019-10, Vol.59 (9), p.n/a |
issn | 0863-1042 1521-3986 |
language | eng |
recordid | cdi_proquest_journals_2307260662 |
source | Wiley Online Library All Journals |
subjects | Acoustic propagation Acoustics Density ratio Electrons Hydrodynamic equations Ion beams Parameters Perturbation methods Plasma Positrons Propagation modes quantum hydrodynamic Relativism relativistic degenerate Relativistic effects Solitary waves Velocity Wave propagation |
title | Obliquely propagating quantum solitary waves in quantum‐magnetized plasma with ultra‐relativistic degenerate electrons and positrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obliquely%20propagating%20quantum%20solitary%20waves%20in%20quantum%E2%80%90magnetized%20plasma%20with%20ultra%E2%80%90relativistic%20degenerate%20electrons%20and%20positrons&rft.jtitle=Contributions%20to%20plasma%20physics%20(1988)&rft.au=Soltani,%20H.&rft.date=2019-10&rft.volume=59&rft.issue=9&rft.epage=n/a&rft.issn=0863-1042&rft.eissn=1521-3986&rft_id=info:doi/10.1002/ctpp.201900038&rft_dat=%3Cproquest_cross%3E2307260662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307260662&rft_id=info:pmid/&rfr_iscdi=true |