Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint
With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory priv...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2019-10, Vol.27 (5), p.1945-1958 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1958 |
---|---|
container_issue | 5 |
container_start_page | 1945 |
container_title | IEEE/ACM transactions on networking |
container_volume | 27 |
creator | Li, Xiang-Yang Liu, Huiqi Zhang, Lan Wu, Zhenan Xie, Yaochen Chen, Ge Wan, Chunxiao Liang, Zhongwei |
description | With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility. |
doi_str_mv | 10.1109/TNET.2019.2933269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2307214618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8809830</ieee_id><sourcerecordid>2307214618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AONlE8-79g_bbb0ZBDVBPQDnprRTXNQW2yXGb29xiaeZSX7vzcxD6JLgihAsbxYvk0VFMZEVlYxRLo_QgNS1KGnN-XHuMWcl55KeorOUNhgThikfoPm09bb166J7g2Le6ZiK1v8N0zbCd4jv6ba4B9gWS28hpk73eHDFc-ja4Is5-BRixv0a4ja2vjtHJ05_JLg41CFaTieL8WM5e314Gt_NSsMY70rCGqals8ZghhttgcGKGqqxc8JoLrTOD4ycpI5CM3K1FaQ2K2usbQCaLBqi6953G8PXDlKnNmEXfV6paHakZMSJyBTpKRNDShGcykd-6vijCFb77NQ-O7XPTh2yy5qrXtMCwD8vBJaCYfYLF0prww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307214618</pqid></control><display><type>article</type><title>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiang-Yang ; Liu, Huiqi ; Zhang, Lan ; Wu, Zhenan ; Xie, Yaochen ; Chen, Ge ; Wan, Chunxiao ; Liang, Zhongwei</creator><creatorcontrib>Li, Xiang-Yang ; Liu, Huiqi ; Zhang, Lan ; Wu, Zhenan ; Xie, Yaochen ; Chen, Ge ; Wan, Chunxiao ; Liang, Zhongwei</creatorcontrib><description>With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2019.2933269</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Authentication ; Data models ; device fingerprint ; Electronic devices ; Feature extraction ; Fingerprinting ; Fingerprints ; Fireworks ; Gyroscopes ; Hardware ; Location based services ; Mobile communication systems ; Mobile handsets ; Model accuracy ; Motion detection ; Motion sensor ; Motion sensors ; Neural networks ; Privacy ; Sensor phenomena and characterization ; Sensors ; Wireless networks</subject><ispartof>IEEE/ACM transactions on networking, 2019-10, Vol.27 (5), p.1945-1958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</citedby><cites>FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</cites><orcidid>0000-0003-1879-0779 ; 0000-0002-5729-106X ; 0000-0002-6070-6625 ; 0000-0003-1004-8588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8809830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8809830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiang-Yang</creatorcontrib><creatorcontrib>Liu, Huiqi</creatorcontrib><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Wu, Zhenan</creatorcontrib><creatorcontrib>Xie, Yaochen</creatorcontrib><creatorcontrib>Chen, Ge</creatorcontrib><creatorcontrib>Wan, Chunxiao</creatorcontrib><creatorcontrib>Liang, Zhongwei</creatorcontrib><title>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.</description><subject>Accelerometers</subject><subject>Authentication</subject><subject>Data models</subject><subject>device fingerprint</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Fireworks</subject><subject>Gyroscopes</subject><subject>Hardware</subject><subject>Location based services</subject><subject>Mobile communication systems</subject><subject>Mobile handsets</subject><subject>Model accuracy</subject><subject>Motion detection</subject><subject>Motion sensor</subject><subject>Motion sensors</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Wireless networks</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AONlE8-79g_bbb0ZBDVBPQDnprRTXNQW2yXGb29xiaeZSX7vzcxD6JLgihAsbxYvk0VFMZEVlYxRLo_QgNS1KGnN-XHuMWcl55KeorOUNhgThikfoPm09bb166J7g2Le6ZiK1v8N0zbCd4jv6ba4B9gWS28hpk73eHDFc-ja4Is5-BRixv0a4ja2vjtHJ05_JLg41CFaTieL8WM5e314Gt_NSsMY70rCGqals8ZghhttgcGKGqqxc8JoLrTOD4ycpI5CM3K1FaQ2K2usbQCaLBqi6953G8PXDlKnNmEXfV6paHakZMSJyBTpKRNDShGcykd-6vijCFb77NQ-O7XPTh2yy5qrXtMCwD8vBJaCYfYLF0prww</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Li, Xiang-Yang</creator><creator>Liu, Huiqi</creator><creator>Zhang, Lan</creator><creator>Wu, Zhenan</creator><creator>Xie, Yaochen</creator><creator>Chen, Ge</creator><creator>Wan, Chunxiao</creator><creator>Liang, Zhongwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1879-0779</orcidid><orcidid>https://orcid.org/0000-0002-5729-106X</orcidid><orcidid>https://orcid.org/0000-0002-6070-6625</orcidid><orcidid>https://orcid.org/0000-0003-1004-8588</orcidid></search><sort><creationdate>201910</creationdate><title>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</title><author>Li, Xiang-Yang ; Liu, Huiqi ; Zhang, Lan ; Wu, Zhenan ; Xie, Yaochen ; Chen, Ge ; Wan, Chunxiao ; Liang, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerometers</topic><topic>Authentication</topic><topic>Data models</topic><topic>device fingerprint</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Fireworks</topic><topic>Gyroscopes</topic><topic>Hardware</topic><topic>Location based services</topic><topic>Mobile communication systems</topic><topic>Mobile handsets</topic><topic>Model accuracy</topic><topic>Motion detection</topic><topic>Motion sensor</topic><topic>Motion sensors</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Yang</creatorcontrib><creatorcontrib>Liu, Huiqi</creatorcontrib><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Wu, Zhenan</creatorcontrib><creatorcontrib>Xie, Yaochen</creatorcontrib><creatorcontrib>Chen, Ge</creatorcontrib><creatorcontrib>Wan, Chunxiao</creatorcontrib><creatorcontrib>Liang, Zhongwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiang-Yang</au><au>Liu, Huiqi</au><au>Zhang, Lan</au><au>Wu, Zhenan</au><au>Xie, Yaochen</au><au>Chen, Ge</au><au>Wan, Chunxiao</au><au>Liang, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2019-10</date><risdate>2019</risdate><volume>27</volume><issue>5</issue><spage>1945</spage><epage>1958</epage><pages>1945-1958</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2019.2933269</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1879-0779</orcidid><orcidid>https://orcid.org/0000-0002-5729-106X</orcidid><orcidid>https://orcid.org/0000-0002-6070-6625</orcidid><orcidid>https://orcid.org/0000-0003-1004-8588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2019-10, Vol.27 (5), p.1945-1958 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_proquest_journals_2307214618 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Authentication Data models device fingerprint Electronic devices Feature extraction Fingerprinting Fingerprints Fireworks Gyroscopes Hardware Location based services Mobile communication systems Mobile handsets Model accuracy Motion detection Motion sensor Motion sensors Neural networks Privacy Sensor phenomena and characterization Sensors Wireless networks |
title | Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20Stars%20in%20the%20Fireworks:%20Deep%20Understanding%20of%20Motion%20Sensor%20Fingerprint&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Li,%20Xiang-Yang&rft.date=2019-10&rft.volume=27&rft.issue=5&rft.spage=1945&rft.epage=1958&rft.pages=1945-1958&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2019.2933269&rft_dat=%3Cproquest_RIE%3E2307214618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307214618&rft_id=info:pmid/&rft_ieee_id=8809830&rfr_iscdi=true |