Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint

With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory priv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2019-10, Vol.27 (5), p.1945-1958
Hauptverfasser: Li, Xiang-Yang, Liu, Huiqi, Zhang, Lan, Wu, Zhenan, Xie, Yaochen, Chen, Ge, Wan, Chunxiao, Liang, Zhongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue 5
container_start_page 1945
container_title IEEE/ACM transactions on networking
container_volume 27
creator Li, Xiang-Yang
Liu, Huiqi
Zhang, Lan
Wu, Zhenan
Xie, Yaochen
Chen, Ge
Wan, Chunxiao
Liang, Zhongwei
description With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.
doi_str_mv 10.1109/TNET.2019.2933269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2307214618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8809830</ieee_id><sourcerecordid>2307214618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AONlE8-79g_bbb0ZBDVBPQDnprRTXNQW2yXGb29xiaeZSX7vzcxD6JLgihAsbxYvk0VFMZEVlYxRLo_QgNS1KGnN-XHuMWcl55KeorOUNhgThikfoPm09bb166J7g2Le6ZiK1v8N0zbCd4jv6ba4B9gWS28hpk73eHDFc-ja4Is5-BRixv0a4ja2vjtHJ05_JLg41CFaTieL8WM5e314Gt_NSsMY70rCGqals8ZghhttgcGKGqqxc8JoLrTOD4ycpI5CM3K1FaQ2K2usbQCaLBqi6953G8PXDlKnNmEXfV6paHakZMSJyBTpKRNDShGcykd-6vijCFb77NQ-O7XPTh2yy5qrXtMCwD8vBJaCYfYLF0prww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307214618</pqid></control><display><type>article</type><title>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiang-Yang ; Liu, Huiqi ; Zhang, Lan ; Wu, Zhenan ; Xie, Yaochen ; Chen, Ge ; Wan, Chunxiao ; Liang, Zhongwei</creator><creatorcontrib>Li, Xiang-Yang ; Liu, Huiqi ; Zhang, Lan ; Wu, Zhenan ; Xie, Yaochen ; Chen, Ge ; Wan, Chunxiao ; Liang, Zhongwei</creatorcontrib><description>With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2019.2933269</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Authentication ; Data models ; device fingerprint ; Electronic devices ; Feature extraction ; Fingerprinting ; Fingerprints ; Fireworks ; Gyroscopes ; Hardware ; Location based services ; Mobile communication systems ; Mobile handsets ; Model accuracy ; Motion detection ; Motion sensor ; Motion sensors ; Neural networks ; Privacy ; Sensor phenomena and characterization ; Sensors ; Wireless networks</subject><ispartof>IEEE/ACM transactions on networking, 2019-10, Vol.27 (5), p.1945-1958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</citedby><cites>FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</cites><orcidid>0000-0003-1879-0779 ; 0000-0002-5729-106X ; 0000-0002-6070-6625 ; 0000-0003-1004-8588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8809830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8809830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiang-Yang</creatorcontrib><creatorcontrib>Liu, Huiqi</creatorcontrib><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Wu, Zhenan</creatorcontrib><creatorcontrib>Xie, Yaochen</creatorcontrib><creatorcontrib>Chen, Ge</creatorcontrib><creatorcontrib>Wan, Chunxiao</creatorcontrib><creatorcontrib>Liang, Zhongwei</creatorcontrib><title>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.</description><subject>Accelerometers</subject><subject>Authentication</subject><subject>Data models</subject><subject>device fingerprint</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Fireworks</subject><subject>Gyroscopes</subject><subject>Hardware</subject><subject>Location based services</subject><subject>Mobile communication systems</subject><subject>Mobile handsets</subject><subject>Model accuracy</subject><subject>Motion detection</subject><subject>Motion sensor</subject><subject>Motion sensors</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Wireless networks</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AONlE8-79g_bbb0ZBDVBPQDnprRTXNQW2yXGb29xiaeZSX7vzcxD6JLgihAsbxYvk0VFMZEVlYxRLo_QgNS1KGnN-XHuMWcl55KeorOUNhgThikfoPm09bb166J7g2Le6ZiK1v8N0zbCd4jv6ba4B9gWS28hpk73eHDFc-ja4Is5-BRixv0a4ja2vjtHJ05_JLg41CFaTieL8WM5e314Gt_NSsMY70rCGqals8ZghhttgcGKGqqxc8JoLrTOD4ycpI5CM3K1FaQ2K2usbQCaLBqi6953G8PXDlKnNmEXfV6paHakZMSJyBTpKRNDShGcykd-6vijCFb77NQ-O7XPTh2yy5qrXtMCwD8vBJaCYfYLF0prww</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Li, Xiang-Yang</creator><creator>Liu, Huiqi</creator><creator>Zhang, Lan</creator><creator>Wu, Zhenan</creator><creator>Xie, Yaochen</creator><creator>Chen, Ge</creator><creator>Wan, Chunxiao</creator><creator>Liang, Zhongwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1879-0779</orcidid><orcidid>https://orcid.org/0000-0002-5729-106X</orcidid><orcidid>https://orcid.org/0000-0002-6070-6625</orcidid><orcidid>https://orcid.org/0000-0003-1004-8588</orcidid></search><sort><creationdate>201910</creationdate><title>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</title><author>Li, Xiang-Yang ; Liu, Huiqi ; Zhang, Lan ; Wu, Zhenan ; Xie, Yaochen ; Chen, Ge ; Wan, Chunxiao ; Liang, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1373a9fdcc0307ade3eb2c2a0ff8ca68aa1554f92f2e74f5d815cbdcdd7ee7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerometers</topic><topic>Authentication</topic><topic>Data models</topic><topic>device fingerprint</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Fireworks</topic><topic>Gyroscopes</topic><topic>Hardware</topic><topic>Location based services</topic><topic>Mobile communication systems</topic><topic>Mobile handsets</topic><topic>Model accuracy</topic><topic>Motion detection</topic><topic>Motion sensor</topic><topic>Motion sensors</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Yang</creatorcontrib><creatorcontrib>Liu, Huiqi</creatorcontrib><creatorcontrib>Zhang, Lan</creatorcontrib><creatorcontrib>Wu, Zhenan</creatorcontrib><creatorcontrib>Xie, Yaochen</creatorcontrib><creatorcontrib>Chen, Ge</creatorcontrib><creatorcontrib>Wan, Chunxiao</creatorcontrib><creatorcontrib>Liang, Zhongwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiang-Yang</au><au>Liu, Huiqi</au><au>Zhang, Lan</au><au>Wu, Zhenan</au><au>Xie, Yaochen</au><au>Chen, Ge</au><au>Wan, Chunxiao</au><au>Liang, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2019-10</date><risdate>2019</risdate><volume>27</volume><issue>5</issue><spage>1945</spage><epage>1958</epage><pages>1945-1958</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2019.2933269</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1879-0779</orcidid><orcidid>https://orcid.org/0000-0002-5729-106X</orcidid><orcidid>https://orcid.org/0000-0002-6070-6625</orcidid><orcidid>https://orcid.org/0000-0003-1004-8588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2019-10, Vol.27 (5), p.1945-1958
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_journals_2307214618
source IEEE Electronic Library (IEL)
subjects Accelerometers
Authentication
Data models
device fingerprint
Electronic devices
Feature extraction
Fingerprinting
Fingerprints
Fireworks
Gyroscopes
Hardware
Location based services
Mobile communication systems
Mobile handsets
Model accuracy
Motion detection
Motion sensor
Motion sensors
Neural networks
Privacy
Sensor phenomena and characterization
Sensors
Wireless networks
title Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20Stars%20in%20the%20Fireworks:%20Deep%20Understanding%20of%20Motion%20Sensor%20Fingerprint&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Li,%20Xiang-Yang&rft.date=2019-10&rft.volume=27&rft.issue=5&rft.spage=1945&rft.epage=1958&rft.pages=1945-1958&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2019.2933269&rft_dat=%3Cproquest_RIE%3E2307214618%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307214618&rft_id=info:pmid/&rft_ieee_id=8809830&rfr_iscdi=true