Impedance matching for dynamic substructuring

Summary This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2019-11, Vol.26 (11), p.n/a
Hauptverfasser: Verma, Mohit, Sivaselvan, M. V., Rajasankar, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Structural control and health monitoring
container_volume 26
creator Verma, Mohit
Sivaselvan, M. V.
Rajasankar, J.
description Summary This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.
doi_str_mv 10.1002/stc.2402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307156564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307156564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8oePGSNZkmbT1K0XVhwYPrOaTJRLtsP0xapP_erBVvXmYG5mEGXkKuOVtxxuAuDGYFgsEJWXApJAXI0tO_WcpzchHCPsoMCrkgdNP0aHVrMGn0YD7q9j1xnU_s1OqmNkkYqzD40Qyjj6tLcub0IeDVb1-St6fHXflMty_rTfmwpSaFHKiIBdAhl9ZCgc7m2lqZO35vQTqDokKbmkqiQCu0kRqdqUQhM5lXPM-KdElu5ru97z5HDIPad6Nv40sFKct5lJmI6nZWxncheHSq93Wj_aQ4U8cwVAxDHcOIlM70qz7g9K9Tr7vyx38DmqRggw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307156564</pqid></control><display><type>article</type><title>Impedance matching for dynamic substructuring</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Verma, Mohit ; Sivaselvan, M. V. ; Rajasankar, J.</creator><creatorcontrib>Verma, Mohit ; Sivaselvan, M. V. ; Rajasankar, J.</creatorcontrib><description>Summary This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1002/stc.2402</identifier><language>eng</language><publisher>Pavia: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Controllers ; Design ; Design optimization ; dynamic substructuring ; Earthquakes ; electromagnetic shaker ; hybrid simulation ; Impedance ; Impedance matching ; Linear matrix inequalities ; linear matrix inequalities (LMI) ; Mass drivers ; Mathematical analysis ; Matrix methods ; optimal control design ; Seismic activity ; Seismic design ; Seismic engineering ; Source code ; Substructures ; Tracking devices ; Tracking equipment</subject><ispartof>Structural control and health monitoring, 2019-11, Vol.26 (11), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</citedby><cites>FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</cites><orcidid>0000-0001-6661-5567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstc.2402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstc.2402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Verma, Mohit</creatorcontrib><creatorcontrib>Sivaselvan, M. V.</creatorcontrib><creatorcontrib>Rajasankar, J.</creatorcontrib><title>Impedance matching for dynamic substructuring</title><title>Structural control and health monitoring</title><description>Summary This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.</description><subject>Actuators</subject><subject>Controllers</subject><subject>Design</subject><subject>Design optimization</subject><subject>dynamic substructuring</subject><subject>Earthquakes</subject><subject>electromagnetic shaker</subject><subject>hybrid simulation</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMI)</subject><subject>Mass drivers</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>optimal control design</subject><subject>Seismic activity</subject><subject>Seismic design</subject><subject>Seismic engineering</subject><subject>Source code</subject><subject>Substructures</subject><subject>Tracking devices</subject><subject>Tracking equipment</subject><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8oePGSNZkmbT1K0XVhwYPrOaTJRLtsP0xapP_erBVvXmYG5mEGXkKuOVtxxuAuDGYFgsEJWXApJAXI0tO_WcpzchHCPsoMCrkgdNP0aHVrMGn0YD7q9j1xnU_s1OqmNkkYqzD40Qyjj6tLcub0IeDVb1-St6fHXflMty_rTfmwpSaFHKiIBdAhl9ZCgc7m2lqZO35vQTqDokKbmkqiQCu0kRqdqUQhM5lXPM-KdElu5ru97z5HDIPad6Nv40sFKct5lJmI6nZWxncheHSq93Wj_aQ4U8cwVAxDHcOIlM70qz7g9K9Tr7vyx38DmqRggw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Verma, Mohit</creator><creator>Sivaselvan, M. V.</creator><creator>Rajasankar, J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid></search><sort><creationdate>201911</creationdate><title>Impedance matching for dynamic substructuring</title><author>Verma, Mohit ; Sivaselvan, M. V. ; Rajasankar, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Controllers</topic><topic>Design</topic><topic>Design optimization</topic><topic>dynamic substructuring</topic><topic>Earthquakes</topic><topic>electromagnetic shaker</topic><topic>hybrid simulation</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMI)</topic><topic>Mass drivers</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>optimal control design</topic><topic>Seismic activity</topic><topic>Seismic design</topic><topic>Seismic engineering</topic><topic>Source code</topic><topic>Substructures</topic><topic>Tracking devices</topic><topic>Tracking equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Mohit</creatorcontrib><creatorcontrib>Sivaselvan, M. V.</creatorcontrib><creatorcontrib>Rajasankar, J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Mohit</au><au>Sivaselvan, M. V.</au><au>Rajasankar, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance matching for dynamic substructuring</atitle><jtitle>Structural control and health monitoring</jtitle><date>2019-11</date><risdate>2019</risdate><volume>26</volume><issue>11</issue><epage>n/a</epage><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>Summary This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.</abstract><cop>Pavia</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/stc.2402</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-2255
ispartof Structural control and health monitoring, 2019-11, Vol.26 (11), p.n/a
issn 1545-2255
1545-2263
language eng
recordid cdi_proquest_journals_2307156564
source Wiley Online Library Journals Frontfile Complete
subjects Actuators
Controllers
Design
Design optimization
dynamic substructuring
Earthquakes
electromagnetic shaker
hybrid simulation
Impedance
Impedance matching
Linear matrix inequalities
linear matrix inequalities (LMI)
Mass drivers
Mathematical analysis
Matrix methods
optimal control design
Seismic activity
Seismic design
Seismic engineering
Source code
Substructures
Tracking devices
Tracking equipment
title Impedance matching for dynamic substructuring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20matching%20for%20dynamic%20substructuring&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Verma,%20Mohit&rft.date=2019-11&rft.volume=26&rft.issue=11&rft.epage=n/a&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1002/stc.2402&rft_dat=%3Cproquest_cross%3E2307156564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307156564&rft_id=info:pmid/&rfr_iscdi=true