Impedance matching for dynamic substructuring
Summary This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure....
Gespeichert in:
Veröffentlicht in: | Structural control and health monitoring 2019-11, Vol.26 (11), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Structural control and health monitoring |
container_volume | 26 |
creator | Verma, Mohit Sivaselvan, M. V. Rajasankar, J. |
description | Summary
This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper. |
doi_str_mv | 10.1002/stc.2402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307156564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307156564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8oePGSNZkmbT1K0XVhwYPrOaTJRLtsP0xapP_erBVvXmYG5mEGXkKuOVtxxuAuDGYFgsEJWXApJAXI0tO_WcpzchHCPsoMCrkgdNP0aHVrMGn0YD7q9j1xnU_s1OqmNkkYqzD40Qyjj6tLcub0IeDVb1-St6fHXflMty_rTfmwpSaFHKiIBdAhl9ZCgc7m2lqZO35vQTqDokKbmkqiQCu0kRqdqUQhM5lXPM-KdElu5ru97z5HDIPad6Nv40sFKct5lJmI6nZWxncheHSq93Wj_aQ4U8cwVAxDHcOIlM70qz7g9K9Tr7vyx38DmqRggw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307156564</pqid></control><display><type>article</type><title>Impedance matching for dynamic substructuring</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Verma, Mohit ; Sivaselvan, M. V. ; Rajasankar, J.</creator><creatorcontrib>Verma, Mohit ; Sivaselvan, M. V. ; Rajasankar, J.</creatorcontrib><description>Summary
This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1002/stc.2402</identifier><language>eng</language><publisher>Pavia: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Controllers ; Design ; Design optimization ; dynamic substructuring ; Earthquakes ; electromagnetic shaker ; hybrid simulation ; Impedance ; Impedance matching ; Linear matrix inequalities ; linear matrix inequalities (LMI) ; Mass drivers ; Mathematical analysis ; Matrix methods ; optimal control design ; Seismic activity ; Seismic design ; Seismic engineering ; Source code ; Substructures ; Tracking devices ; Tracking equipment</subject><ispartof>Structural control and health monitoring, 2019-11, Vol.26 (11), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</citedby><cites>FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</cites><orcidid>0000-0001-6661-5567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstc.2402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstc.2402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Verma, Mohit</creatorcontrib><creatorcontrib>Sivaselvan, M. V.</creatorcontrib><creatorcontrib>Rajasankar, J.</creatorcontrib><title>Impedance matching for dynamic substructuring</title><title>Structural control and health monitoring</title><description>Summary
This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.</description><subject>Actuators</subject><subject>Controllers</subject><subject>Design</subject><subject>Design optimization</subject><subject>dynamic substructuring</subject><subject>Earthquakes</subject><subject>electromagnetic shaker</subject><subject>hybrid simulation</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMI)</subject><subject>Mass drivers</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>optimal control design</subject><subject>Seismic activity</subject><subject>Seismic design</subject><subject>Seismic engineering</subject><subject>Source code</subject><subject>Substructures</subject><subject>Tracking devices</subject><subject>Tracking equipment</subject><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8oePGSNZkmbT1K0XVhwYPrOaTJRLtsP0xapP_erBVvXmYG5mEGXkKuOVtxxuAuDGYFgsEJWXApJAXI0tO_WcpzchHCPsoMCrkgdNP0aHVrMGn0YD7q9j1xnU_s1OqmNkkYqzD40Qyjj6tLcub0IeDVb1-St6fHXflMty_rTfmwpSaFHKiIBdAhl9ZCgc7m2lqZO35vQTqDokKbmkqiQCu0kRqdqUQhM5lXPM-KdElu5ru97z5HDIPad6Nv40sFKct5lJmI6nZWxncheHSq93Wj_aQ4U8cwVAxDHcOIlM70qz7g9K9Tr7vyx38DmqRggw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Verma, Mohit</creator><creator>Sivaselvan, M. V.</creator><creator>Rajasankar, J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid></search><sort><creationdate>201911</creationdate><title>Impedance matching for dynamic substructuring</title><author>Verma, Mohit ; Sivaselvan, M. V. ; Rajasankar, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-42722efe15dd28efd7add57f19d25fce4bed3cb5e4ed4ac5aefcb485657b17683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Controllers</topic><topic>Design</topic><topic>Design optimization</topic><topic>dynamic substructuring</topic><topic>Earthquakes</topic><topic>electromagnetic shaker</topic><topic>hybrid simulation</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMI)</topic><topic>Mass drivers</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>optimal control design</topic><topic>Seismic activity</topic><topic>Seismic design</topic><topic>Seismic engineering</topic><topic>Source code</topic><topic>Substructures</topic><topic>Tracking devices</topic><topic>Tracking equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Mohit</creatorcontrib><creatorcontrib>Sivaselvan, M. V.</creatorcontrib><creatorcontrib>Rajasankar, J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Mohit</au><au>Sivaselvan, M. V.</au><au>Rajasankar, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance matching for dynamic substructuring</atitle><jtitle>Structural control and health monitoring</jtitle><date>2019-11</date><risdate>2019</risdate><volume>26</volume><issue>11</issue><epage>n/a</epage><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>Summary
This paper presents a new strategy for dynamic substructuring in which an actuator/shaker is not viewed as a tracking device, but rather as a dynamic system whose impedance is to match that of a virtual substructure. The strategy also decouples control design from the physical substructure. In this paper, such control design is approached from an optimization viewpoint. The main contributions are (a) single and multi‐objective optimal impedance matching design of dynamic substructuring controllers using linear matrix inequalities, (b) experimental validation, particularly using a lightly damped physical substructure (which poses significant stability challenges using conventional approaches), (c) use of an electromagnetic actuator as an active mass driver to represent virtual substructures, (d) use of not only linear single and multi‐degree of freedom but also nonlinear virtual substructures, and (e) two ways of applying earthquake excitation to the substructured system—by means of a shake table at the base or using an active mass driver at the top. Controllers designed using this approach are easy to implement and result in stable and accurate dynamic substructuring. Source code for control design using the impedance matching approach is included as online supplemental material with this paper.</abstract><cop>Pavia</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/stc.2402</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-2255 |
ispartof | Structural control and health monitoring, 2019-11, Vol.26 (11), p.n/a |
issn | 1545-2255 1545-2263 |
language | eng |
recordid | cdi_proquest_journals_2307156564 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Actuators Controllers Design Design optimization dynamic substructuring Earthquakes electromagnetic shaker hybrid simulation Impedance Impedance matching Linear matrix inequalities linear matrix inequalities (LMI) Mass drivers Mathematical analysis Matrix methods optimal control design Seismic activity Seismic design Seismic engineering Source code Substructures Tracking devices Tracking equipment |
title | Impedance matching for dynamic substructuring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20matching%20for%20dynamic%20substructuring&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Verma,%20Mohit&rft.date=2019-11&rft.volume=26&rft.issue=11&rft.epage=n/a&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1002/stc.2402&rft_dat=%3Cproquest_cross%3E2307156564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307156564&rft_id=info:pmid/&rfr_iscdi=true |