Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes
We investigated how foraging ecotypes of female long-nosed fur seals Arctocephalus forsteri could be identified from vibrissa stable isotopes. We collected regrowths of vibrissae from adult females (n = 18) from Cape Gantheaume, Kangaroo Island, South Australia, from 2 breeding seasons (2016, 2017)....
Gespeichert in:
Veröffentlicht in: | Marine ecology. Progress series (Halstenbek) 2019-10, Vol.628, p.223-234 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | |
container_start_page | 223 |
container_title | Marine ecology. Progress series (Halstenbek) |
container_volume | 628 |
creator | Foo, Dahlia Hindell, Mark McMahon, Clive Goldsworthy, Simon |
description | We investigated how foraging ecotypes of female long-nosed fur seals Arctocephalus forsteri could be identified from vibrissa stable isotopes. We collected regrowths of vibrissae from adult females (n = 18) from Cape Gantheaume, Kangaroo Island, South Australia, from 2 breeding seasons (2016, 2017). The period represented by the regrowth was known, and 8 individuals were administered with 15N-enriched glycine as a biomarker to mark the start date of the regrowth. Non-glycine-marked and glycine-marked vibrissae were used to estimate the rate of the individual vibrissa regrowth. Using individual growth rates (0.18 ± 0.04 mm d−1), we reconstructed a stable isotope (δ13C and δ15N) time series for each regrowth and allocated them to corresponding atsea locations either based on geolocation tracks (n = 14) or foraging habitat type (shelf or oceanic) based on diving data (n = 2) of the sampled seals. Mean (±SD) δ15N from vibrissa segments was higher when females foraged on the continental shelf region (16.1 ± 0.7‰, n = 29) compared to oceanic waters (15.1 ± 0.7‰, n = 106) in 2017, whereas it was similar in both regions in 2016 (shelf: 15.3 ± 0.4‰, n = 13; oceanic: 15.4 ± 0.4‰, n = 15). Based on the stable isotope signatures of vibrissa segments, model-based clustering analysis correctly classified 79.8% as originating from shelf or oceanic foraging habitats. This demonstrates the potential of using vibrissa stable isotopes for studying the foraging ecology of an important top marine predator. |
doi_str_mv | 10.3354/meps13113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2307140240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26920534</jstor_id><sourcerecordid>26920534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-af42cc2ed77ce5f9f9604940e85f4eb50ed3aaa9eb44978496ad47b9fb1163903</originalsourceid><addsrcrecordid>eNo90EtLxDAUBeAgCo6PhT9ACLhyUU2aNJ0sh8HHwIAbXZfb9mYmQ6epuamgv94pI67uXXycA4exGykelCr04x4HkkpKdcJm0kiTycLaUzYTspTZ3Chxzi6IdkJIo0szYz-rFvvk3bfvN9yFCJvp2ULtEyTiwXFoxy5xh3vokHeh32R9IGy5GyMnhI4vYpNCg8MWupGmDEoYPa9hUqHnX76Ongg4JagPGZ5CCgPSFTtz0BFe_91L9vH89L58zdZvL6vlYp01eWlTBk7nTZNjW5YNFs46a4S2WuC8cBrrQmCrAMBirbUt59oaaHVZW1dLaZQV6pLdHXOHGD5HpFTtwhj7Q2WVK1FKLXI9qfujamIgiuiqIfo9xO9Kimqatvqf9mBvj3ZHKcR_mBubi0Jp9QvRw3iG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307140240</pqid></control><display><type>article</type><title>Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes</title><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Foo, Dahlia ; Hindell, Mark ; McMahon, Clive ; Goldsworthy, Simon</creator><creatorcontrib>Foo, Dahlia ; Hindell, Mark ; McMahon, Clive ; Goldsworthy, Simon</creatorcontrib><description>We investigated how foraging ecotypes of female long-nosed fur seals Arctocephalus forsteri could be identified from vibrissa stable isotopes. We collected regrowths of vibrissae from adult females (n = 18) from Cape Gantheaume, Kangaroo Island, South Australia, from 2 breeding seasons (2016, 2017). The period represented by the regrowth was known, and 8 individuals were administered with 15N-enriched glycine as a biomarker to mark the start date of the regrowth. Non-glycine-marked and glycine-marked vibrissae were used to estimate the rate of the individual vibrissa regrowth. Using individual growth rates (0.18 ± 0.04 mm d−1), we reconstructed a stable isotope (δ13C and δ15N) time series for each regrowth and allocated them to corresponding atsea locations either based on geolocation tracks (n = 14) or foraging habitat type (shelf or oceanic) based on diving data (n = 2) of the sampled seals. Mean (±SD) δ15N from vibrissa segments was higher when females foraged on the continental shelf region (16.1 ± 0.7‰, n = 29) compared to oceanic waters (15.1 ± 0.7‰, n = 106) in 2017, whereas it was similar in both regions in 2016 (shelf: 15.3 ± 0.4‰, n = 13; oceanic: 15.4 ± 0.4‰, n = 15). Based on the stable isotope signatures of vibrissa segments, model-based clustering analysis correctly classified 79.8% as originating from shelf or oceanic foraging habitats. This demonstrates the potential of using vibrissa stable isotopes for studying the foraging ecology of an important top marine predator.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps13113</identifier><language>eng</language><publisher>Oldendorf: Inter-Research Science Center</publisher><subject>Aquatic mammals ; Arctocephalus forsteri ; Biomarkers ; Breeding seasons ; Cluster analysis ; Clustering ; Continental shelves ; Ecological monitoring ; Ecotypes ; Females ; Foraging ; Foraging behavior ; Foraging habitats ; Glycine ; Glycine (amino acid) ; Growth rate ; Habitats ; Isotopes ; Marine mammals ; Nitrogen isotopes ; Predators ; Regrowth ; Seals ; Segments ; Stable isotopes ; Vibrissae</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2019-10, Vol.628, p.223-234</ispartof><rights>Inter-Research 2019</rights><rights>Copyright Inter-Research Science Center 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-af42cc2ed77ce5f9f9604940e85f4eb50ed3aaa9eb44978496ad47b9fb1163903</citedby><cites>FETCH-LOGICAL-c279t-af42cc2ed77ce5f9f9604940e85f4eb50ed3aaa9eb44978496ad47b9fb1163903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26920534$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26920534$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Foo, Dahlia</creatorcontrib><creatorcontrib>Hindell, Mark</creatorcontrib><creatorcontrib>McMahon, Clive</creatorcontrib><creatorcontrib>Goldsworthy, Simon</creatorcontrib><title>Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes</title><title>Marine ecology. Progress series (Halstenbek)</title><description>We investigated how foraging ecotypes of female long-nosed fur seals Arctocephalus forsteri could be identified from vibrissa stable isotopes. We collected regrowths of vibrissae from adult females (n = 18) from Cape Gantheaume, Kangaroo Island, South Australia, from 2 breeding seasons (2016, 2017). The period represented by the regrowth was known, and 8 individuals were administered with 15N-enriched glycine as a biomarker to mark the start date of the regrowth. Non-glycine-marked and glycine-marked vibrissae were used to estimate the rate of the individual vibrissa regrowth. Using individual growth rates (0.18 ± 0.04 mm d−1), we reconstructed a stable isotope (δ13C and δ15N) time series for each regrowth and allocated them to corresponding atsea locations either based on geolocation tracks (n = 14) or foraging habitat type (shelf or oceanic) based on diving data (n = 2) of the sampled seals. Mean (±SD) δ15N from vibrissa segments was higher when females foraged on the continental shelf region (16.1 ± 0.7‰, n = 29) compared to oceanic waters (15.1 ± 0.7‰, n = 106) in 2017, whereas it was similar in both regions in 2016 (shelf: 15.3 ± 0.4‰, n = 13; oceanic: 15.4 ± 0.4‰, n = 15). Based on the stable isotope signatures of vibrissa segments, model-based clustering analysis correctly classified 79.8% as originating from shelf or oceanic foraging habitats. This demonstrates the potential of using vibrissa stable isotopes for studying the foraging ecology of an important top marine predator.</description><subject>Aquatic mammals</subject><subject>Arctocephalus forsteri</subject><subject>Biomarkers</subject><subject>Breeding seasons</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Continental shelves</subject><subject>Ecological monitoring</subject><subject>Ecotypes</subject><subject>Females</subject><subject>Foraging</subject><subject>Foraging behavior</subject><subject>Foraging habitats</subject><subject>Glycine</subject><subject>Glycine (amino acid)</subject><subject>Growth rate</subject><subject>Habitats</subject><subject>Isotopes</subject><subject>Marine mammals</subject><subject>Nitrogen isotopes</subject><subject>Predators</subject><subject>Regrowth</subject><subject>Seals</subject><subject>Segments</subject><subject>Stable isotopes</subject><subject>Vibrissae</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo90EtLxDAUBeAgCo6PhT9ACLhyUU2aNJ0sh8HHwIAbXZfb9mYmQ6epuamgv94pI67uXXycA4exGykelCr04x4HkkpKdcJm0kiTycLaUzYTspTZ3Chxzi6IdkJIo0szYz-rFvvk3bfvN9yFCJvp2ULtEyTiwXFoxy5xh3vokHeh32R9IGy5GyMnhI4vYpNCg8MWupGmDEoYPa9hUqHnX76Ongg4JagPGZ5CCgPSFTtz0BFe_91L9vH89L58zdZvL6vlYp01eWlTBk7nTZNjW5YNFs46a4S2WuC8cBrrQmCrAMBirbUt59oaaHVZW1dLaZQV6pLdHXOHGD5HpFTtwhj7Q2WVK1FKLXI9qfujamIgiuiqIfo9xO9Kimqatvqf9mBvj3ZHKcR_mBubi0Jp9QvRw3iG</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Foo, Dahlia</creator><creator>Hindell, Mark</creator><creator>McMahon, Clive</creator><creator>Goldsworthy, Simon</creator><general>Inter-Research Science Center</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>M7N</scope></search><sort><creationdate>20191010</creationdate><title>Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes</title><author>Foo, Dahlia ; Hindell, Mark ; McMahon, Clive ; Goldsworthy, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-af42cc2ed77ce5f9f9604940e85f4eb50ed3aaa9eb44978496ad47b9fb1163903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic mammals</topic><topic>Arctocephalus forsteri</topic><topic>Biomarkers</topic><topic>Breeding seasons</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Continental shelves</topic><topic>Ecological monitoring</topic><topic>Ecotypes</topic><topic>Females</topic><topic>Foraging</topic><topic>Foraging behavior</topic><topic>Foraging habitats</topic><topic>Glycine</topic><topic>Glycine (amino acid)</topic><topic>Growth rate</topic><topic>Habitats</topic><topic>Isotopes</topic><topic>Marine mammals</topic><topic>Nitrogen isotopes</topic><topic>Predators</topic><topic>Regrowth</topic><topic>Seals</topic><topic>Segments</topic><topic>Stable isotopes</topic><topic>Vibrissae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foo, Dahlia</creatorcontrib><creatorcontrib>Hindell, Mark</creatorcontrib><creatorcontrib>McMahon, Clive</creatorcontrib><creatorcontrib>Goldsworthy, Simon</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foo, Dahlia</au><au>Hindell, Mark</au><au>McMahon, Clive</au><au>Goldsworthy, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2019-10-10</date><risdate>2019</risdate><volume>628</volume><spage>223</spage><epage>234</epage><pages>223-234</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>We investigated how foraging ecotypes of female long-nosed fur seals Arctocephalus forsteri could be identified from vibrissa stable isotopes. We collected regrowths of vibrissae from adult females (n = 18) from Cape Gantheaume, Kangaroo Island, South Australia, from 2 breeding seasons (2016, 2017). The period represented by the regrowth was known, and 8 individuals were administered with 15N-enriched glycine as a biomarker to mark the start date of the regrowth. Non-glycine-marked and glycine-marked vibrissae were used to estimate the rate of the individual vibrissa regrowth. Using individual growth rates (0.18 ± 0.04 mm d−1), we reconstructed a stable isotope (δ13C and δ15N) time series for each regrowth and allocated them to corresponding atsea locations either based on geolocation tracks (n = 14) or foraging habitat type (shelf or oceanic) based on diving data (n = 2) of the sampled seals. Mean (±SD) δ15N from vibrissa segments was higher when females foraged on the continental shelf region (16.1 ± 0.7‰, n = 29) compared to oceanic waters (15.1 ± 0.7‰, n = 106) in 2017, whereas it was similar in both regions in 2016 (shelf: 15.3 ± 0.4‰, n = 13; oceanic: 15.4 ± 0.4‰, n = 15). Based on the stable isotope signatures of vibrissa segments, model-based clustering analysis correctly classified 79.8% as originating from shelf or oceanic foraging habitats. This demonstrates the potential of using vibrissa stable isotopes for studying the foraging ecology of an important top marine predator.</abstract><cop>Oldendorf</cop><pub>Inter-Research Science Center</pub><doi>10.3354/meps13113</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-8630 |
ispartof | Marine ecology. Progress series (Halstenbek), 2019-10, Vol.628, p.223-234 |
issn | 0171-8630 1616-1599 |
language | eng |
recordid | cdi_proquest_journals_2307140240 |
source | JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Aquatic mammals Arctocephalus forsteri Biomarkers Breeding seasons Cluster analysis Clustering Continental shelves Ecological monitoring Ecotypes Females Foraging Foraging behavior Foraging habitats Glycine Glycine (amino acid) Growth rate Habitats Isotopes Marine mammals Nitrogen isotopes Predators Regrowth Seals Segments Stable isotopes Vibrissae |
title | Identifying foraging habitats of adult female long-nosed fur seal Arctocephalus forsteri based on vibrissa stable isotopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20foraging%20habitats%20of%20adult%20female%20long-nosed%20fur%20seal%20Arctocephalus%20forsteri%20based%20on%20vibrissa%20stable%20isotopes&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=Foo,%20Dahlia&rft.date=2019-10-10&rft.volume=628&rft.spage=223&rft.epage=234&rft.pages=223-234&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps13113&rft_dat=%3Cjstor_proqu%3E26920534%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307140240&rft_id=info:pmid/&rft_jstor_id=26920534&rfr_iscdi=true |