On Free Generalized Inverse Gaussian Distributions

We study here properties of free Generalized Inverse Gaussian distributions (fGIG) in free probability. We show that in many cases the fGIG shares similar properties with the classical GIG distribution. In particular we prove that fGIG is freely infinitely divisible, free regular and unimodal, and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-10, Vol.13 (7), p.3091-3116
Hauptverfasser: Hasebe, Takahiro, Szpojankowski, Kamil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3116
container_issue 7
container_start_page 3091
container_title Complex analysis and operator theory
container_volume 13
creator Hasebe, Takahiro
Szpojankowski, Kamil
description We study here properties of free Generalized Inverse Gaussian distributions (fGIG) in free probability. We show that in many cases the fGIG shares similar properties with the classical GIG distribution. In particular we prove that fGIG is freely infinitely divisible, free regular and unimodal, and moreover we determine which distributions in this class are freely selfdecomposable. In the second part of the paper we prove that for free random variables X ,  Y where Y has a free Poisson distribution one has X = d 1 X + Y if and only if X has fGIG distribution for special choice of parameters. We also point out that the free GIG distribution maximizes the same free entropy functional as the classical GIG does for the classical entropy.
doi_str_mv 10.1007/s11785-018-0790-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306807840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306807840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-baddb751260eb4cd0400be752743aaa5e98d61726721de862192cf4e3136f4cd3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59WZTbIfR6m2Fgq96HnZJBNJqZu6mwj6690S0ZOnGYbnfQcexq4RbhFA3UVEpUsOqDkoA9ycsBlKiVwLKU5_97I4Zxcx7gBkwsyMia3PloEoW5Gn4PbdFzXZ2n9QiOnmxhg757OHLg6hq8ah6328ZGet20e6-plz9rJ8fF488c12tV7cb3hdSDPwyjVNpUoUEqgq6gYKgIpUKVSRO-dKMrqRqIRUAhvSUqARdVtQjrlsE5_P2c3Uewj9-0hxsLt-DD69tCIHqUHpAhKFE1WHPsZArT2E7s2FT4tgj2rspMYmNfaoxpqUEVMmJta_Uvhr_j_0DckHZS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306807840</pqid></control><display><type>article</type><title>On Free Generalized Inverse Gaussian Distributions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hasebe, Takahiro ; Szpojankowski, Kamil</creator><creatorcontrib>Hasebe, Takahiro ; Szpojankowski, Kamil</creatorcontrib><description>We study here properties of free Generalized Inverse Gaussian distributions (fGIG) in free probability. We show that in many cases the fGIG shares similar properties with the classical GIG distribution. In particular we prove that fGIG is freely infinitely divisible, free regular and unimodal, and moreover we determine which distributions in this class are freely selfdecomposable. In the second part of the paper we prove that for free random variables X ,  Y where Y has a free Poisson distribution one has X = d 1 X + Y if and only if X has fGIG distribution for special choice of parameters. We also point out that the free GIG distribution maximizes the same free entropy functional as the classical GIG does for the classical entropy.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-018-0790-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Entropy ; Generalized inverse ; Inverse Gaussian probability distribution ; Mathematics ; Mathematics and Statistics ; Normal distribution ; Operator Theory ; Random variables</subject><ispartof>Complex analysis and operator theory, 2019-10, Vol.13 (7), p.3091-3116</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-baddb751260eb4cd0400be752743aaa5e98d61726721de862192cf4e3136f4cd3</citedby><cites>FETCH-LOGICAL-c469t-baddb751260eb4cd0400be752743aaa5e98d61726721de862192cf4e3136f4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-018-0790-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-018-0790-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hasebe, Takahiro</creatorcontrib><creatorcontrib>Szpojankowski, Kamil</creatorcontrib><title>On Free Generalized Inverse Gaussian Distributions</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>We study here properties of free Generalized Inverse Gaussian distributions (fGIG) in free probability. We show that in many cases the fGIG shares similar properties with the classical GIG distribution. In particular we prove that fGIG is freely infinitely divisible, free regular and unimodal, and moreover we determine which distributions in this class are freely selfdecomposable. In the second part of the paper we prove that for free random variables X ,  Y where Y has a free Poisson distribution one has X = d 1 X + Y if and only if X has fGIG distribution for special choice of parameters. We also point out that the free GIG distribution maximizes the same free entropy functional as the classical GIG does for the classical entropy.</description><subject>Analysis</subject><subject>Entropy</subject><subject>Generalized inverse</subject><subject>Inverse Gaussian probability distribution</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normal distribution</subject><subject>Operator Theory</subject><subject>Random variables</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59WZTbIfR6m2Fgq96HnZJBNJqZu6mwj6690S0ZOnGYbnfQcexq4RbhFA3UVEpUsOqDkoA9ycsBlKiVwLKU5_97I4Zxcx7gBkwsyMia3PloEoW5Gn4PbdFzXZ2n9QiOnmxhg757OHLg6hq8ah6328ZGet20e6-plz9rJ8fF488c12tV7cb3hdSDPwyjVNpUoUEqgq6gYKgIpUKVSRO-dKMrqRqIRUAhvSUqARdVtQjrlsE5_P2c3Uewj9-0hxsLt-DD69tCIHqUHpAhKFE1WHPsZArT2E7s2FT4tgj2rspMYmNfaoxpqUEVMmJta_Uvhr_j_0DckHZS8</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Hasebe, Takahiro</creator><creator>Szpojankowski, Kamil</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>On Free Generalized Inverse Gaussian Distributions</title><author>Hasebe, Takahiro ; Szpojankowski, Kamil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-baddb751260eb4cd0400be752743aaa5e98d61726721de862192cf4e3136f4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Entropy</topic><topic>Generalized inverse</topic><topic>Inverse Gaussian probability distribution</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normal distribution</topic><topic>Operator Theory</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasebe, Takahiro</creatorcontrib><creatorcontrib>Szpojankowski, Kamil</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasebe, Takahiro</au><au>Szpojankowski, Kamil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Free Generalized Inverse Gaussian Distributions</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><spage>3091</spage><epage>3116</epage><pages>3091-3116</pages><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>We study here properties of free Generalized Inverse Gaussian distributions (fGIG) in free probability. We show that in many cases the fGIG shares similar properties with the classical GIG distribution. In particular we prove that fGIG is freely infinitely divisible, free regular and unimodal, and moreover we determine which distributions in this class are freely selfdecomposable. In the second part of the paper we prove that for free random variables X ,  Y where Y has a free Poisson distribution one has X = d 1 X + Y if and only if X has fGIG distribution for special choice of parameters. We also point out that the free GIG distribution maximizes the same free entropy functional as the classical GIG does for the classical entropy.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-018-0790-9</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2019-10, Vol.13 (7), p.3091-3116
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2306807840
source SpringerLink Journals - AutoHoldings
subjects Analysis
Entropy
Generalized inverse
Inverse Gaussian probability distribution
Mathematics
Mathematics and Statistics
Normal distribution
Operator Theory
Random variables
title On Free Generalized Inverse Gaussian Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Free%20Generalized%20Inverse%20Gaussian%20Distributions&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Hasebe,%20Takahiro&rft.date=2019-10-01&rft.volume=13&rft.issue=7&rft.spage=3091&rft.epage=3116&rft.pages=3091-3116&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-018-0790-9&rft_dat=%3Cproquest_cross%3E2306807840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306807840&rft_id=info:pmid/&rfr_iscdi=true