All-oxide ferromagnetic resonance and spin pumping with SrIrO3

SrIrO3 is a semimetallic complex oxide of interest for spintronic applications due to the large spin-orbit coupling arising from iridium. It has unusual charge transport properties derived from a complex multiband electronic structure, with electron and hole pockets both contributing to conductivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-09, Vol.100 (11), p.1
Hauptverfasser: Crossley, S, Swartz, A G, Nishio, K, Hikita, Y, Hwang, H Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Physical review. B
container_volume 100
creator Crossley, S
Swartz, A G
Nishio, K
Hikita, Y
Hwang, H Y
description SrIrO3 is a semimetallic complex oxide of interest for spintronic applications due to the large spin-orbit coupling arising from iridium. It has unusual charge transport properties derived from a complex multiband electronic structure, with electron and hole pockets both contributing to conductivity. We report ferromagnetic resonance of La0.7Sr0.3MnO3 and SrIrO3 epitaxial bilayer films on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates. Anomalous trends in the out-of-plane magnetic anisotropy and Landé g factor suggest that orbital magnetism is modified by proximity of SrIrO3 at low temperatures, likely contributing to large (∼fivefold) enhancements in Gilbert damping. However, enhanced Gilbert damping due to spin pumping is also apparent in the temperature range 250–300 K. The effective spin-mixing conductance is evaluated to be G↑↓eff∼0.5×1014Ω−1m−2, and the spin scattering length scale of SrIrO3 is of the order of ∼1 nm. Our work demonstrates the delicate interplay of pure spin current with interfacially mediated spin-orbit effects in a complex oxide heterostructure, exploiting temperature as a control parameter, and should be of interest for both spin pumping and understanding the electronic structure of thin film iridates.
doi_str_mv 10.1103/PhysRevB.100.115163
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2306797552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306797552</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-ccfff8e474455879ab680891b9a07b0a79076864817b47952c9fd43772d67c413</originalsourceid><addsrcrecordid>eNqFjUtLw0AUhQdRsNT-AjcDrlPvPO_cjVCLj0Kh4mNdJsmkTWmTOJP6-PdWFLeuvsPh4xzGzgWMhQB1-bD-TI_h7Xos4LsxwqojNpDaUkZk6fgvGzhlo5Q2ACAsEAIN2NVku83aj7oMvAoxtju_akJfFzyG1Da-KQL3TclTVze82-8OWPH3ul_zpziLC3XGTiq_TWH0yyF7ub15nt5n88XdbDqZZ53Qos-KoqoqFzRqbYxD8rl14Ejk5AFz8EiA1lntBOYayciCqlIrRFlaLLRQQ3bxs9vF9nUfUr_ctPvYHC6XUoFFQmPkf5aUQjmtvgDH1VeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306221384</pqid></control><display><type>article</type><title>All-oxide ferromagnetic resonance and spin pumping with SrIrO3</title><source>American Physical Society Journals</source><creator>Crossley, S ; Swartz, A G ; Nishio, K ; Hikita, Y ; Hwang, H Y</creator><creatorcontrib>Crossley, S ; Swartz, A G ; Nishio, K ; Hikita, Y ; Hwang, H Y</creatorcontrib><description>SrIrO3 is a semimetallic complex oxide of interest for spintronic applications due to the large spin-orbit coupling arising from iridium. It has unusual charge transport properties derived from a complex multiband electronic structure, with electron and hole pockets both contributing to conductivity. We report ferromagnetic resonance of La0.7Sr0.3MnO3 and SrIrO3 epitaxial bilayer films on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates. Anomalous trends in the out-of-plane magnetic anisotropy and Landé g factor suggest that orbital magnetism is modified by proximity of SrIrO3 at low temperatures, likely contributing to large (∼fivefold) enhancements in Gilbert damping. However, enhanced Gilbert damping due to spin pumping is also apparent in the temperature range 250–300 K. The effective spin-mixing conductance is evaluated to be G↑↓eff∼0.5×1014Ω−1m−2, and the spin scattering length scale of SrIrO3 is of the order of ∼1 nm. Our work demonstrates the delicate interplay of pure spin current with interfacially mediated spin-orbit effects in a complex oxide heterostructure, exploiting temperature as a control parameter, and should be of interest for both spin pumping and understanding the electronic structure of thin film iridates.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.115163</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bilayers ; Charge transport ; Damping ; Electron spin ; Electronic structure ; Ferromagnetic materials ; Ferromagnetic resonance ; Heterostructures ; Iridium ; Magnetic anisotropy ; Magnetism ; Pumping ; Resistance ; Spin-orbit interactions ; Spintronics ; Substrates ; Thin films ; Transport properties</subject><ispartof>Physical review. B, 2019-09, Vol.100 (11), p.1</ispartof><rights>Copyright American Physical Society Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Crossley, S</creatorcontrib><creatorcontrib>Swartz, A G</creatorcontrib><creatorcontrib>Nishio, K</creatorcontrib><creatorcontrib>Hikita, Y</creatorcontrib><creatorcontrib>Hwang, H Y</creatorcontrib><title>All-oxide ferromagnetic resonance and spin pumping with SrIrO3</title><title>Physical review. B</title><description>SrIrO3 is a semimetallic complex oxide of interest for spintronic applications due to the large spin-orbit coupling arising from iridium. It has unusual charge transport properties derived from a complex multiband electronic structure, with electron and hole pockets both contributing to conductivity. We report ferromagnetic resonance of La0.7Sr0.3MnO3 and SrIrO3 epitaxial bilayer films on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates. Anomalous trends in the out-of-plane magnetic anisotropy and Landé g factor suggest that orbital magnetism is modified by proximity of SrIrO3 at low temperatures, likely contributing to large (∼fivefold) enhancements in Gilbert damping. However, enhanced Gilbert damping due to spin pumping is also apparent in the temperature range 250–300 K. The effective spin-mixing conductance is evaluated to be G↑↓eff∼0.5×1014Ω−1m−2, and the spin scattering length scale of SrIrO3 is of the order of ∼1 nm. Our work demonstrates the delicate interplay of pure spin current with interfacially mediated spin-orbit effects in a complex oxide heterostructure, exploiting temperature as a control parameter, and should be of interest for both spin pumping and understanding the electronic structure of thin film iridates.</description><subject>Bilayers</subject><subject>Charge transport</subject><subject>Damping</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Heterostructures</subject><subject>Iridium</subject><subject>Magnetic anisotropy</subject><subject>Magnetism</subject><subject>Pumping</subject><subject>Resistance</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFjUtLw0AUhQdRsNT-AjcDrlPvPO_cjVCLj0Kh4mNdJsmkTWmTOJP6-PdWFLeuvsPh4xzGzgWMhQB1-bD-TI_h7Xos4LsxwqojNpDaUkZk6fgvGzhlo5Q2ACAsEAIN2NVku83aj7oMvAoxtju_akJfFzyG1Da-KQL3TclTVze82-8OWPH3ul_zpziLC3XGTiq_TWH0yyF7ub15nt5n88XdbDqZZ53Qos-KoqoqFzRqbYxD8rl14Ejk5AFz8EiA1lntBOYayciCqlIrRFlaLLRQQ3bxs9vF9nUfUr_ctPvYHC6XUoFFQmPkf5aUQjmtvgDH1VeA</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Crossley, S</creator><creator>Swartz, A G</creator><creator>Nishio, K</creator><creator>Hikita, Y</creator><creator>Hwang, H Y</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190915</creationdate><title>All-oxide ferromagnetic resonance and spin pumping with SrIrO3</title><author>Crossley, S ; Swartz, A G ; Nishio, K ; Hikita, Y ; Hwang, H Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-ccfff8e474455879ab680891b9a07b0a79076864817b47952c9fd43772d67c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bilayers</topic><topic>Charge transport</topic><topic>Damping</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Heterostructures</topic><topic>Iridium</topic><topic>Magnetic anisotropy</topic><topic>Magnetism</topic><topic>Pumping</topic><topic>Resistance</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crossley, S</creatorcontrib><creatorcontrib>Swartz, A G</creatorcontrib><creatorcontrib>Nishio, K</creatorcontrib><creatorcontrib>Hikita, Y</creatorcontrib><creatorcontrib>Hwang, H Y</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crossley, S</au><au>Swartz, A G</au><au>Nishio, K</au><au>Hikita, Y</au><au>Hwang, H Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-oxide ferromagnetic resonance and spin pumping with SrIrO3</atitle><jtitle>Physical review. B</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>100</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>SrIrO3 is a semimetallic complex oxide of interest for spintronic applications due to the large spin-orbit coupling arising from iridium. It has unusual charge transport properties derived from a complex multiband electronic structure, with electron and hole pockets both contributing to conductivity. We report ferromagnetic resonance of La0.7Sr0.3MnO3 and SrIrO3 epitaxial bilayer films on (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates. Anomalous trends in the out-of-plane magnetic anisotropy and Landé g factor suggest that orbital magnetism is modified by proximity of SrIrO3 at low temperatures, likely contributing to large (∼fivefold) enhancements in Gilbert damping. However, enhanced Gilbert damping due to spin pumping is also apparent in the temperature range 250–300 K. The effective spin-mixing conductance is evaluated to be G↑↓eff∼0.5×1014Ω−1m−2, and the spin scattering length scale of SrIrO3 is of the order of ∼1 nm. Our work demonstrates the delicate interplay of pure spin current with interfacially mediated spin-orbit effects in a complex oxide heterostructure, exploiting temperature as a control parameter, and should be of interest for both spin pumping and understanding the electronic structure of thin film iridates.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.115163</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-09, Vol.100 (11), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2306797552
source American Physical Society Journals
subjects Bilayers
Charge transport
Damping
Electron spin
Electronic structure
Ferromagnetic materials
Ferromagnetic resonance
Heterostructures
Iridium
Magnetic anisotropy
Magnetism
Pumping
Resistance
Spin-orbit interactions
Spintronics
Substrates
Thin films
Transport properties
title All-oxide ferromagnetic resonance and spin pumping with SrIrO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-oxide%20ferromagnetic%20resonance%20and%20spin%20pumping%20with%20SrIrO3&rft.jtitle=Physical%20review.%20B&rft.au=Crossley,%20S&rft.date=2019-09-15&rft.volume=100&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.115163&rft_dat=%3Cproquest%3E2306797552%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306221384&rft_id=info:pmid/&rfr_iscdi=true