Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments
A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has bee...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2019-10, Vol.92 (10), Article 241 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 92 |
creator | Lloyd, Matthew J. Abernethy, Robert G. Armstrong, David E. J. Bagot, Paul A. J. Moody, Michael P. Martinez, Enrique Nguyen-Manh, Duc |
description | A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations.
Graphical abstract |
doi_str_mv | 10.1140/epjb/e2019-100244-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2306531311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610578747</galeid><sourcerecordid>A610578747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEEqXwC7hY4sQh7Tj-SJZbteKjUhHSAuJoeZ1x8LKxg-1I3X-Pd1NRegHkgz2j533HGr1V9ZLCBaUcLnHabS-xAbqqKUDDeX14VJ1RzngtgcnHv99N97R6ltIOAKik_KyaNrp3Orvga-f72WBPEg4Rh1OPOE--1Rt8Q2wMI_nhPGZnyMfgM5K1jvtAkhvn_QlOJAeic-GmGLZYqjEMUU_fDwRvJ4xuRJ_T8-qJ1fuEL-7u8-rru7df1h_qm0_vr9dXN7UR7SrX0sgOOmkp9KWmQnCNHWcMLG-EFcYajZLaVQv9Sra0l3JLYYtWiFZKLlbsvHq1-JbP_JwxZbULc_RlpGoYSMEoo7RQFws16D0q523IUZtyehydCR6tK_0r2TEuWw7w3wIKou1a3hbB6wcCc9zdbR70nJK6_rx5aP5P9g9ftrAmhpQiWjWVDet4UBTUMRTqGAp1CoVaQqEORcUXVSq0HzDeb-Vvsl_vlrr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306531311</pqid></control><display><type>article</type><title>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</title><source>SpringerLink Journals</source><creator>Lloyd, Matthew J. ; Abernethy, Robert G. ; Armstrong, David E. J. ; Bagot, Paul A. J. ; Moody, Michael P. ; Martinez, Enrique ; Nguyen-Manh, Duc</creator><creatorcontrib>Lloyd, Matthew J. ; Abernethy, Robert G. ; Armstrong, David E. J. ; Bagot, Paul A. J. ; Moody, Michael P. ; Martinez, Enrique ; Nguyen-Manh, Duc</creatorcontrib><description>A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations.
Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2019-100244-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloys ; Chemical precipitation ; Complex Systems ; Computer simulation ; Condensed Matter Physics ; Crystal defects ; Fluid- and Aerodynamics ; Grain boundaries ; High temperature effects ; Investigations ; Ion irradiation ; Materials selection ; Monte Carlo method ; Physics ; Physics and Astronomy ; Point defects ; Power plants ; Radiation ; Radiation effects ; Regular Article ; Solid State Physics ; Tomography ; Topical issue: Multiscale Materials Modeling ; Transmutation ; Tungsten base alloys ; Weather forecasting</subject><ispartof>The European physical journal. B, Condensed matter physics, 2019-10, Vol.92 (10), Article 241</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</citedby><cites>FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2019-100244-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2019-100244-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lloyd, Matthew J.</creatorcontrib><creatorcontrib>Abernethy, Robert G.</creatorcontrib><creatorcontrib>Armstrong, David E. J.</creatorcontrib><creatorcontrib>Bagot, Paul A. J.</creatorcontrib><creatorcontrib>Moody, Michael P.</creatorcontrib><creatorcontrib>Martinez, Enrique</creatorcontrib><creatorcontrib>Nguyen-Manh, Duc</creatorcontrib><title>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations.
Graphical abstract</description><subject>Alloys</subject><subject>Chemical precipitation</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Fluid- and Aerodynamics</subject><subject>Grain boundaries</subject><subject>High temperature effects</subject><subject>Investigations</subject><subject>Ion irradiation</subject><subject>Materials selection</subject><subject>Monte Carlo method</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Point defects</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>Tomography</subject><subject>Topical issue: Multiscale Materials Modeling</subject><subject>Transmutation</subject><subject>Tungsten base alloys</subject><subject>Weather forecasting</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqNkk1v1DAQhiMEEqXwC7hY4sQh7Tj-SJZbteKjUhHSAuJoeZ1x8LKxg-1I3X-Pd1NRegHkgz2j533HGr1V9ZLCBaUcLnHabS-xAbqqKUDDeX14VJ1RzngtgcnHv99N97R6ltIOAKik_KyaNrp3Orvga-f72WBPEg4Rh1OPOE--1Rt8Q2wMI_nhPGZnyMfgM5K1jvtAkhvn_QlOJAeic-GmGLZYqjEMUU_fDwRvJ4xuRJ_T8-qJ1fuEL-7u8-rru7df1h_qm0_vr9dXN7UR7SrX0sgOOmkp9KWmQnCNHWcMLG-EFcYajZLaVQv9Sra0l3JLYYtWiFZKLlbsvHq1-JbP_JwxZbULc_RlpGoYSMEoo7RQFws16D0q523IUZtyehydCR6tK_0r2TEuWw7w3wIKou1a3hbB6wcCc9zdbR70nJK6_rx5aP5P9g9ftrAmhpQiWjWVDet4UBTUMRTqGAp1CoVaQqEORcUXVSq0HzDeb-Vvsl_vlrr7</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lloyd, Matthew J.</creator><creator>Abernethy, Robert G.</creator><creator>Armstrong, David E. J.</creator><creator>Bagot, Paul A. J.</creator><creator>Moody, Michael P.</creator><creator>Martinez, Enrique</creator><creator>Nguyen-Manh, Duc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20191001</creationdate><title>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</title><author>Lloyd, Matthew J. ; Abernethy, Robert G. ; Armstrong, David E. J. ; Bagot, Paul A. J. ; Moody, Michael P. ; Martinez, Enrique ; Nguyen-Manh, Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Chemical precipitation</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Fluid- and Aerodynamics</topic><topic>Grain boundaries</topic><topic>High temperature effects</topic><topic>Investigations</topic><topic>Ion irradiation</topic><topic>Materials selection</topic><topic>Monte Carlo method</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Point defects</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>Tomography</topic><topic>Topical issue: Multiscale Materials Modeling</topic><topic>Transmutation</topic><topic>Tungsten base alloys</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Matthew J.</creatorcontrib><creatorcontrib>Abernethy, Robert G.</creatorcontrib><creatorcontrib>Armstrong, David E. J.</creatorcontrib><creatorcontrib>Bagot, Paul A. J.</creatorcontrib><creatorcontrib>Moody, Michael P.</creatorcontrib><creatorcontrib>Martinez, Enrique</creatorcontrib><creatorcontrib>Nguyen-Manh, Duc</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Matthew J.</au><au>Abernethy, Robert G.</au><au>Armstrong, David E. J.</au><au>Bagot, Paul A. J.</au><au>Moody, Michael P.</au><au>Martinez, Enrique</au><au>Nguyen-Manh, Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>92</volume><issue>10</issue><artnum>241</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2019-100244-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2019-10, Vol.92 (10), Article 241 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2306531311 |
source | SpringerLink Journals |
subjects | Alloys Chemical precipitation Complex Systems Computer simulation Condensed Matter Physics Crystal defects Fluid- and Aerodynamics Grain boundaries High temperature effects Investigations Ion irradiation Materials selection Monte Carlo method Physics Physics and Astronomy Point defects Power plants Radiation Radiation effects Regular Article Solid State Physics Tomography Topical issue: Multiscale Materials Modeling Transmutation Tungsten base alloys Weather forecasting |
title | Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-induced%20segregation%20in%20W-Re:%20from%20kinetic%20Monte%20Carlo%20simulations%20to%20atom%20probe%20tomography%20experiments&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Lloyd,%20Matthew%20J.&rft.date=2019-10-01&rft.volume=92&rft.issue=10&rft.artnum=241&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2019-100244-y&rft_dat=%3Cgale_proqu%3EA610578747%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306531311&rft_id=info:pmid/&rft_galeid=A610578747&rfr_iscdi=true |