Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments

A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2019-10, Vol.92 (10), Article 241
Hauptverfasser: Lloyd, Matthew J., Abernethy, Robert G., Armstrong, David E. J., Bagot, Paul A. J., Moody, Michael P., Martinez, Enrique, Nguyen-Manh, Duc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 92
creator Lloyd, Matthew J.
Abernethy, Robert G.
Armstrong, David E. J.
Bagot, Paul A. J.
Moody, Michael P.
Martinez, Enrique
Nguyen-Manh, Duc
description A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations. Graphical abstract
doi_str_mv 10.1140/epjb/e2019-100244-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2306531311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610578747</galeid><sourcerecordid>A610578747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEEqXwC7hY4sQh7Tj-SJZbteKjUhHSAuJoeZ1x8LKxg-1I3X-Pd1NRegHkgz2j533HGr1V9ZLCBaUcLnHabS-xAbqqKUDDeX14VJ1RzngtgcnHv99N97R6ltIOAKik_KyaNrp3Orvga-f72WBPEg4Rh1OPOE--1Rt8Q2wMI_nhPGZnyMfgM5K1jvtAkhvn_QlOJAeic-GmGLZYqjEMUU_fDwRvJ4xuRJ_T8-qJ1fuEL-7u8-rru7df1h_qm0_vr9dXN7UR7SrX0sgOOmkp9KWmQnCNHWcMLG-EFcYajZLaVQv9Sra0l3JLYYtWiFZKLlbsvHq1-JbP_JwxZbULc_RlpGoYSMEoo7RQFws16D0q523IUZtyehydCR6tK_0r2TEuWw7w3wIKou1a3hbB6wcCc9zdbR70nJK6_rx5aP5P9g9ftrAmhpQiWjWVDet4UBTUMRTqGAp1CoVaQqEORcUXVSq0HzDeb-Vvsl_vlrr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306531311</pqid></control><display><type>article</type><title>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</title><source>SpringerLink Journals</source><creator>Lloyd, Matthew J. ; Abernethy, Robert G. ; Armstrong, David E. J. ; Bagot, Paul A. J. ; Moody, Michael P. ; Martinez, Enrique ; Nguyen-Manh, Duc</creator><creatorcontrib>Lloyd, Matthew J. ; Abernethy, Robert G. ; Armstrong, David E. J. ; Bagot, Paul A. J. ; Moody, Michael P. ; Martinez, Enrique ; Nguyen-Manh, Duc</creatorcontrib><description>A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations. Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2019-100244-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloys ; Chemical precipitation ; Complex Systems ; Computer simulation ; Condensed Matter Physics ; Crystal defects ; Fluid- and Aerodynamics ; Grain boundaries ; High temperature effects ; Investigations ; Ion irradiation ; Materials selection ; Monte Carlo method ; Physics ; Physics and Astronomy ; Point defects ; Power plants ; Radiation ; Radiation effects ; Regular Article ; Solid State Physics ; Tomography ; Topical issue: Multiscale Materials Modeling ; Transmutation ; Tungsten base alloys ; Weather forecasting</subject><ispartof>The European physical journal. B, Condensed matter physics, 2019-10, Vol.92 (10), Article 241</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>COPYRIGHT 2020 Springer</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</citedby><cites>FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2019-100244-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2019-100244-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lloyd, Matthew J.</creatorcontrib><creatorcontrib>Abernethy, Robert G.</creatorcontrib><creatorcontrib>Armstrong, David E. J.</creatorcontrib><creatorcontrib>Bagot, Paul A. J.</creatorcontrib><creatorcontrib>Moody, Michael P.</creatorcontrib><creatorcontrib>Martinez, Enrique</creatorcontrib><creatorcontrib>Nguyen-Manh, Duc</creatorcontrib><title>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations. Graphical abstract</description><subject>Alloys</subject><subject>Chemical precipitation</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Fluid- and Aerodynamics</subject><subject>Grain boundaries</subject><subject>High temperature effects</subject><subject>Investigations</subject><subject>Ion irradiation</subject><subject>Materials selection</subject><subject>Monte Carlo method</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Point defects</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>Tomography</subject><subject>Topical issue: Multiscale Materials Modeling</subject><subject>Transmutation</subject><subject>Tungsten base alloys</subject><subject>Weather forecasting</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqNkk1v1DAQhiMEEqXwC7hY4sQh7Tj-SJZbteKjUhHSAuJoeZ1x8LKxg-1I3X-Pd1NRegHkgz2j533HGr1V9ZLCBaUcLnHabS-xAbqqKUDDeX14VJ1RzngtgcnHv99N97R6ltIOAKik_KyaNrp3Orvga-f72WBPEg4Rh1OPOE--1Rt8Q2wMI_nhPGZnyMfgM5K1jvtAkhvn_QlOJAeic-GmGLZYqjEMUU_fDwRvJ4xuRJ_T8-qJ1fuEL-7u8-rru7df1h_qm0_vr9dXN7UR7SrX0sgOOmkp9KWmQnCNHWcMLG-EFcYajZLaVQv9Sra0l3JLYYtWiFZKLlbsvHq1-JbP_JwxZbULc_RlpGoYSMEoo7RQFws16D0q523IUZtyehydCR6tK_0r2TEuWw7w3wIKou1a3hbB6wcCc9zdbR70nJK6_rx5aP5P9g9ftrAmhpQiWjWVDet4UBTUMRTqGAp1CoVaQqEORcUXVSq0HzDeb-Vvsl_vlrr7</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lloyd, Matthew J.</creator><creator>Abernethy, Robert G.</creator><creator>Armstrong, David E. J.</creator><creator>Bagot, Paul A. J.</creator><creator>Moody, Michael P.</creator><creator>Martinez, Enrique</creator><creator>Nguyen-Manh, Duc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20191001</creationdate><title>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</title><author>Lloyd, Matthew J. ; Abernethy, Robert G. ; Armstrong, David E. J. ; Bagot, Paul A. J. ; Moody, Michael P. ; Martinez, Enrique ; Nguyen-Manh, Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-6c68086f10d5791554ae84330f425f5cfcae61f970d9671d66b10bef557664593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Chemical precipitation</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Fluid- and Aerodynamics</topic><topic>Grain boundaries</topic><topic>High temperature effects</topic><topic>Investigations</topic><topic>Ion irradiation</topic><topic>Materials selection</topic><topic>Monte Carlo method</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Point defects</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>Tomography</topic><topic>Topical issue: Multiscale Materials Modeling</topic><topic>Transmutation</topic><topic>Tungsten base alloys</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Matthew J.</creatorcontrib><creatorcontrib>Abernethy, Robert G.</creatorcontrib><creatorcontrib>Armstrong, David E. J.</creatorcontrib><creatorcontrib>Bagot, Paul A. J.</creatorcontrib><creatorcontrib>Moody, Michael P.</creatorcontrib><creatorcontrib>Martinez, Enrique</creatorcontrib><creatorcontrib>Nguyen-Manh, Duc</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Matthew J.</au><au>Abernethy, Robert G.</au><au>Armstrong, David E. J.</au><au>Bagot, Paul A. J.</au><au>Moody, Michael P.</au><au>Martinez, Enrique</au><au>Nguyen-Manh, Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>92</volume><issue>10</issue><artnum>241</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2019-100244-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2019-10, Vol.92 (10), Article 241
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2306531311
source SpringerLink Journals
subjects Alloys
Chemical precipitation
Complex Systems
Computer simulation
Condensed Matter Physics
Crystal defects
Fluid- and Aerodynamics
Grain boundaries
High temperature effects
Investigations
Ion irradiation
Materials selection
Monte Carlo method
Physics
Physics and Astronomy
Point defects
Power plants
Radiation
Radiation effects
Regular Article
Solid State Physics
Tomography
Topical issue: Multiscale Materials Modeling
Transmutation
Tungsten base alloys
Weather forecasting
title Radiation-induced segregation in W-Re: from kinetic Monte Carlo simulations to atom probe tomography experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-induced%20segregation%20in%20W-Re:%20from%20kinetic%20Monte%20Carlo%20simulations%20to%20atom%20probe%20tomography%20experiments&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Lloyd,%20Matthew%20J.&rft.date=2019-10-01&rft.volume=92&rft.issue=10&rft.artnum=241&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2019-100244-y&rft_dat=%3Cgale_proqu%3EA610578747%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306531311&rft_id=info:pmid/&rft_galeid=A610578747&rfr_iscdi=true