Mars entry trajectory robust optimization based on evidence under epistemic uncertainty
The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein,...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2019-10, Vol.163, p.225-237 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | |
container_start_page | 225 |
container_title | Acta astronautica |
container_volume | 163 |
creator | Huang, Yuechen Li, Haiyang Du, Xin He, Xiangyue |
description | The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties.
•Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency. |
doi_str_mv | 10.1016/j.actaastro.2019.01.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306478167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576518312256</els_id><sourcerecordid>2306478167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BgueWydNmrTHZfEfKF4UjyFNJ5DiNmuSLqyf3iwrXj3NG3jvDfMj5JpCRYGK27HSJmkdU_BVDbSrgFbA-AlZ0FZ2ZQ0MTskCoONlI0VzTi5iHAFA1m23IB8vOsQCpxT2RQp6RJN8lsH3c0yF3ya3cd86OT8VvY44FFngzg04GSzmacBQ4NbFhBtn8m4wJO2mtL8kZ1Z_Rrz6nUvyfn_3tn4sn18fntar59IwzlKp7UAF63tNh6bXwHknuWZ92_HGgkQ-UGnqHplAyVsQjKJl1BhqO4HW6p4tyc2xdxv814wxqdHPYconVc1AcNlSIbNLHl0m-BgDWrUNbqPDXlFQB4pqVH8U1YGiAqoyxZxcHZOYn9g5DCoad3h-cCGzUoN3_3b8ADVzggs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306478167</pqid></control><display><type>article</type><title>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Yuechen ; Li, Haiyang ; Du, Xin ; He, Xiangyue</creator><creatorcontrib>Huang, Yuechen ; Li, Haiyang ; Du, Xin ; He, Xiangyue</creatorcontrib><description>The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties.
•Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.01.034</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aerodynamic coefficients ; Analytic functions ; Atmospheric entry ; Computer simulation ; Epistemic uncertainty ; Epistemology ; Evidence theory ; Iron ; Mars ; Mars entry ; Optimal control ; Optimization ; Polynomial chaos expansion ; Polynomials ; Robust optimization ; Robustness ; Trajectory optimization ; Uncertainty</subject><ispartof>Acta astronautica, 2019-10, Vol.163, p.225-237</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</citedby><cites>FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</cites><orcidid>0000-0001-9927-2126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0094576518312256$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Huang, Yuechen</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>He, Xiangyue</creatorcontrib><title>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</title><title>Acta astronautica</title><description>The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties.
•Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.</description><subject>Aerodynamic coefficients</subject><subject>Analytic functions</subject><subject>Atmospheric entry</subject><subject>Computer simulation</subject><subject>Epistemic uncertainty</subject><subject>Epistemology</subject><subject>Evidence theory</subject><subject>Iron</subject><subject>Mars</subject><subject>Mars entry</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Polynomial chaos expansion</subject><subject>Polynomials</subject><subject>Robust optimization</subject><subject>Robustness</subject><subject>Trajectory optimization</subject><subject>Uncertainty</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BgueWydNmrTHZfEfKF4UjyFNJ5DiNmuSLqyf3iwrXj3NG3jvDfMj5JpCRYGK27HSJmkdU_BVDbSrgFbA-AlZ0FZ2ZQ0MTskCoONlI0VzTi5iHAFA1m23IB8vOsQCpxT2RQp6RJN8lsH3c0yF3ya3cd86OT8VvY44FFngzg04GSzmacBQ4NbFhBtn8m4wJO2mtL8kZ1Z_Rrz6nUvyfn_3tn4sn18fntar59IwzlKp7UAF63tNh6bXwHknuWZ92_HGgkQ-UGnqHplAyVsQjKJl1BhqO4HW6p4tyc2xdxv814wxqdHPYconVc1AcNlSIbNLHl0m-BgDWrUNbqPDXlFQB4pqVH8U1YGiAqoyxZxcHZOYn9g5DCoad3h-cCGzUoN3_3b8ADVzggs</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Huang, Yuechen</creator><creator>Li, Haiyang</creator><creator>Du, Xin</creator><creator>He, Xiangyue</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9927-2126</orcidid></search><sort><creationdate>201910</creationdate><title>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</title><author>Huang, Yuechen ; Li, Haiyang ; Du, Xin ; He, Xiangyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamic coefficients</topic><topic>Analytic functions</topic><topic>Atmospheric entry</topic><topic>Computer simulation</topic><topic>Epistemic uncertainty</topic><topic>Epistemology</topic><topic>Evidence theory</topic><topic>Iron</topic><topic>Mars</topic><topic>Mars entry</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Polynomial chaos expansion</topic><topic>Polynomials</topic><topic>Robust optimization</topic><topic>Robustness</topic><topic>Trajectory optimization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yuechen</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>He, Xiangyue</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yuechen</au><au>Li, Haiyang</au><au>Du, Xin</au><au>He, Xiangyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</atitle><jtitle>Acta astronautica</jtitle><date>2019-10</date><risdate>2019</risdate><volume>163</volume><spage>225</spage><epage>237</epage><pages>225-237</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties.
•Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.01.034</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9927-2126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2019-10, Vol.163, p.225-237 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2306478167 |
source | Elsevier ScienceDirect Journals |
subjects | Aerodynamic coefficients Analytic functions Atmospheric entry Computer simulation Epistemic uncertainty Epistemology Evidence theory Iron Mars Mars entry Optimal control Optimization Polynomial chaos expansion Polynomials Robust optimization Robustness Trajectory optimization Uncertainty |
title | Mars entry trajectory robust optimization based on evidence under epistemic uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mars%20entry%20trajectory%20robust%20optimization%20based%20on%20evidence%20under%20epistemic%20uncertainty&rft.jtitle=Acta%20astronautica&rft.au=Huang,%20Yuechen&rft.date=2019-10&rft.volume=163&rft.spage=225&rft.epage=237&rft.pages=225-237&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.01.034&rft_dat=%3Cproquest_cross%3E2306478167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306478167&rft_id=info:pmid/&rft_els_id=S0094576518312256&rfr_iscdi=true |