Mars entry trajectory robust optimization based on evidence under epistemic uncertainty

The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-10, Vol.163, p.225-237
Hauptverfasser: Huang, Yuechen, Li, Haiyang, Du, Xin, He, Xiangyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue
container_start_page 225
container_title Acta astronautica
container_volume 163
creator Huang, Yuechen
Li, Haiyang
Du, Xin
He, Xiangyue
description The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties. •Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.
doi_str_mv 10.1016/j.actaastro.2019.01.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306478167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576518312256</els_id><sourcerecordid>2306478167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BgueWydNmrTHZfEfKF4UjyFNJ5DiNmuSLqyf3iwrXj3NG3jvDfMj5JpCRYGK27HSJmkdU_BVDbSrgFbA-AlZ0FZ2ZQ0MTskCoONlI0VzTi5iHAFA1m23IB8vOsQCpxT2RQp6RJN8lsH3c0yF3ya3cd86OT8VvY44FFngzg04GSzmacBQ4NbFhBtn8m4wJO2mtL8kZ1Z_Rrz6nUvyfn_3tn4sn18fntar59IwzlKp7UAF63tNh6bXwHknuWZ92_HGgkQ-UGnqHplAyVsQjKJl1BhqO4HW6p4tyc2xdxv814wxqdHPYconVc1AcNlSIbNLHl0m-BgDWrUNbqPDXlFQB4pqVH8U1YGiAqoyxZxcHZOYn9g5DCoad3h-cCGzUoN3_3b8ADVzggs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306478167</pqid></control><display><type>article</type><title>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Yuechen ; Li, Haiyang ; Du, Xin ; He, Xiangyue</creator><creatorcontrib>Huang, Yuechen ; Li, Haiyang ; Du, Xin ; He, Xiangyue</creatorcontrib><description>The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties. •Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.01.034</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Aerodynamic coefficients ; Analytic functions ; Atmospheric entry ; Computer simulation ; Epistemic uncertainty ; Epistemology ; Evidence theory ; Iron ; Mars ; Mars entry ; Optimal control ; Optimization ; Polynomial chaos expansion ; Polynomials ; Robust optimization ; Robustness ; Trajectory optimization ; Uncertainty</subject><ispartof>Acta astronautica, 2019-10, Vol.163, p.225-237</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</citedby><cites>FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</cites><orcidid>0000-0001-9927-2126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0094576518312256$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Huang, Yuechen</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>He, Xiangyue</creatorcontrib><title>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</title><title>Acta astronautica</title><description>The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties. •Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.</description><subject>Aerodynamic coefficients</subject><subject>Analytic functions</subject><subject>Atmospheric entry</subject><subject>Computer simulation</subject><subject>Epistemic uncertainty</subject><subject>Epistemology</subject><subject>Evidence theory</subject><subject>Iron</subject><subject>Mars</subject><subject>Mars entry</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Polynomial chaos expansion</subject><subject>Polynomials</subject><subject>Robust optimization</subject><subject>Robustness</subject><subject>Trajectory optimization</subject><subject>Uncertainty</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BgueWydNmrTHZfEfKF4UjyFNJ5DiNmuSLqyf3iwrXj3NG3jvDfMj5JpCRYGK27HSJmkdU_BVDbSrgFbA-AlZ0FZ2ZQ0MTskCoONlI0VzTi5iHAFA1m23IB8vOsQCpxT2RQp6RJN8lsH3c0yF3ya3cd86OT8VvY44FFngzg04GSzmacBQ4NbFhBtn8m4wJO2mtL8kZ1Z_Rrz6nUvyfn_3tn4sn18fntar59IwzlKp7UAF63tNh6bXwHknuWZ92_HGgkQ-UGnqHplAyVsQjKJl1BhqO4HW6p4tyc2xdxv814wxqdHPYconVc1AcNlSIbNLHl0m-BgDWrUNbqPDXlFQB4pqVH8U1YGiAqoyxZxcHZOYn9g5DCoad3h-cCGzUoN3_3b8ADVzggs</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Huang, Yuechen</creator><creator>Li, Haiyang</creator><creator>Du, Xin</creator><creator>He, Xiangyue</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9927-2126</orcidid></search><sort><creationdate>201910</creationdate><title>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</title><author>Huang, Yuechen ; Li, Haiyang ; Du, Xin ; He, Xiangyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-afd163bba1d5ba044974a3b8945f07e4d17c2be36e7480631ef31cc1f96effab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamic coefficients</topic><topic>Analytic functions</topic><topic>Atmospheric entry</topic><topic>Computer simulation</topic><topic>Epistemic uncertainty</topic><topic>Epistemology</topic><topic>Evidence theory</topic><topic>Iron</topic><topic>Mars</topic><topic>Mars entry</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Polynomial chaos expansion</topic><topic>Polynomials</topic><topic>Robust optimization</topic><topic>Robustness</topic><topic>Trajectory optimization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yuechen</creatorcontrib><creatorcontrib>Li, Haiyang</creatorcontrib><creatorcontrib>Du, Xin</creatorcontrib><creatorcontrib>He, Xiangyue</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yuechen</au><au>Li, Haiyang</au><au>Du, Xin</au><au>He, Xiangyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mars entry trajectory robust optimization based on evidence under epistemic uncertainty</atitle><jtitle>Acta astronautica</jtitle><date>2019-10</date><risdate>2019</risdate><volume>163</volume><spage>225</spage><epage>237</epage><pages>225-237</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The epistemic uncertainties caused by insufficient knowledge of the atmosphere, aerodynamic coefficient, and entry state render the entry process challenging, as they not only result in the deviation of the preplanned trajectory, but also may lead to the nonsatisfaction of path constraints. Herein, a robust epistemic uncertainty optimization (REUO) method based on evidence is proposed to solve the Mars entry trajectory optimization problem under epistemic uncertainty. A two-loop nested robust optimization (RO) model is formulated, in which the outer-loop optimization searches the optimal control while the inner-loop optimization calculates the extremal trajectory performances within each focal element (FE) to evaluate the evidence level. To solve the path constraint violation problem under uncertainties, the constraint design based on limitation bounds is considered in the RO model. The polynomial chaos expansion (PCE) is employed to obtain the approximate analytic function of the trajectory performance under uncertainties. Thereafter, the optimization based on ordinary stochastic entry dynamics in the inner loop is replaced by a simple parameter optimization of the analytic functions, which can be readily and rapidly solved. The REUO method is tested in a specific Mars entry mission. The simulation results show that the proposed method can identify the most robust solutions with the optimal trajectory performance under epistemic uncertainties. •Robust trajectory optimization model under epistemic uncertainty is formulated.•A robust epistemic uncertainty optimization method based on evidence is proposed.•Employment of nonintrusive PCE technique improves the optimization efficiency.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.01.034</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9927-2126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-10, Vol.163, p.225-237
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2306478167
source Elsevier ScienceDirect Journals
subjects Aerodynamic coefficients
Analytic functions
Atmospheric entry
Computer simulation
Epistemic uncertainty
Epistemology
Evidence theory
Iron
Mars
Mars entry
Optimal control
Optimization
Polynomial chaos expansion
Polynomials
Robust optimization
Robustness
Trajectory optimization
Uncertainty
title Mars entry trajectory robust optimization based on evidence under epistemic uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mars%20entry%20trajectory%20robust%20optimization%20based%20on%20evidence%20under%20epistemic%20uncertainty&rft.jtitle=Acta%20astronautica&rft.au=Huang,%20Yuechen&rft.date=2019-10&rft.volume=163&rft.spage=225&rft.epage=237&rft.pages=225-237&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.01.034&rft_dat=%3Cproquest_cross%3E2306478167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306478167&rft_id=info:pmid/&rft_els_id=S0094576518312256&rfr_iscdi=true