Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects

[Display omitted] •Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2019-10, Vol.220, p.106661, Article 106661
Hauptverfasser: Nicolas, Andrea, Co, Noelle Easter C., Burns, James T., Sangid, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106661
container_title Engineering fracture mechanics
container_volume 220
creator Nicolas, Andrea
Co, Noelle Easter C.
Burns, James T.
Sangid, Michael D.
description [Display omitted] •Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation. The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.
doi_str_mv 10.1016/j.engfracmech.2019.106661
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306474416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794419303005</els_id><sourcerecordid>2306474416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</originalsourceid><addsrcrecordid>eNqNkEtPxCAUhYnRxHH0P9S47gjl0XZpJr6SSXSha6Q8OtRpqUBN5t9LUxcuXUEO557L-QC4RnCDIGK33UYPrfFC9lruNwVEddIZY-gErFBV4rzEiJ6CFYQo3WtCzsFFCB2EsGQVXIGPV6-VldEObWZEtO2kM5niPjM72GiT4obMeNdn0k3jQaust9K7EP0k4-R1JgaVnnySZmfv_Lh3B9ceM22MljFcgjMjDkFf_Z5r8P5w_7Z9yncvj8_bu10uCa5jLkojaYOZaESZvoyooAoVFLFaqApT2tAaF4IVRhEopBKwKhjCitaNJrQRCq_BzZI7evc16RB55yY_pJW8wJCRkhDEkqteXHOH4LXho7e98EeOIJ-B8o7_AcpnoHwBmma3y6xONb6t9jxIqweZ-PnUlCtn_5HyA5s-hto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306474416</pqid></control><display><type>article</type><title>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</title><source>Elsevier ScienceDirect Journals</source><creator>Nicolas, Andrea ; Co, Noelle Easter C. ; Burns, James T. ; Sangid, Michael D.</creator><creatorcontrib>Nicolas, Andrea ; Co, Noelle Easter C. ; Burns, James T. ; Sangid, Michael D.</creatorcontrib><description>[Display omitted] •Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation. The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2019.106661</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Corrosion ; Corrosion effects ; Corrosion fatigue ; Corrosion morphology ; Crack initiation ; Crack propagation ; Crystal plasticity modeling ; Fatigue crack initiation ; Fatigue failure ; Fracture mechanics ; Microstructure ; Morphology ; Railroad accidents &amp; safety ; X-ray computer tomography</subject><ispartof>Engineering fracture mechanics, 2019-10, Vol.220, p.106661, Article 106661</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</citedby><cites>FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794419303005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nicolas, Andrea</creatorcontrib><creatorcontrib>Co, Noelle Easter C.</creatorcontrib><creatorcontrib>Burns, James T.</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><title>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</title><title>Engineering fracture mechanics</title><description>[Display omitted] •Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation. The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.</description><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion fatigue</subject><subject>Corrosion morphology</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crystal plasticity modeling</subject><subject>Fatigue crack initiation</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Railroad accidents &amp; safety</subject><subject>X-ray computer tomography</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPxCAUhYnRxHH0P9S47gjl0XZpJr6SSXSha6Q8OtRpqUBN5t9LUxcuXUEO557L-QC4RnCDIGK33UYPrfFC9lruNwVEddIZY-gErFBV4rzEiJ6CFYQo3WtCzsFFCB2EsGQVXIGPV6-VldEObWZEtO2kM5niPjM72GiT4obMeNdn0k3jQaust9K7EP0k4-R1JgaVnnySZmfv_Lh3B9ceM22MljFcgjMjDkFf_Z5r8P5w_7Z9yncvj8_bu10uCa5jLkojaYOZaESZvoyooAoVFLFaqApT2tAaF4IVRhEopBKwKhjCitaNJrQRCq_BzZI7evc16RB55yY_pJW8wJCRkhDEkqteXHOH4LXho7e98EeOIJ-B8o7_AcpnoHwBmma3y6xONb6t9jxIqweZ-PnUlCtn_5HyA5s-hto</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Nicolas, Andrea</creator><creator>Co, Noelle Easter C.</creator><creator>Burns, James T.</creator><creator>Sangid, Michael D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20191015</creationdate><title>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</title><author>Nicolas, Andrea ; Co, Noelle Easter C. ; Burns, James T. ; Sangid, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion fatigue</topic><topic>Corrosion morphology</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crystal plasticity modeling</topic><topic>Fatigue crack initiation</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Railroad accidents &amp; safety</topic><topic>X-ray computer tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas, Andrea</creatorcontrib><creatorcontrib>Co, Noelle Easter C.</creatorcontrib><creatorcontrib>Burns, James T.</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas, Andrea</au><au>Co, Noelle Easter C.</au><au>Burns, James T.</au><au>Sangid, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>220</volume><spage>106661</spage><pages>106661-</pages><artnum>106661</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>[Display omitted] •Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation. The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2019.106661</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2019-10, Vol.220, p.106661, Article 106661
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2306474416
source Elsevier ScienceDirect Journals
subjects Corrosion
Corrosion effects
Corrosion fatigue
Corrosion morphology
Crack initiation
Crack propagation
Crystal plasticity modeling
Fatigue crack initiation
Fatigue failure
Fracture mechanics
Microstructure
Morphology
Railroad accidents & safety
X-ray computer tomography
title Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20fatigue%20crack%20initiation%20from%20coupled%20microstructure%20and%20corrosion%20morphology%20effects&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Nicolas,%20Andrea&rft.date=2019-10-15&rft.volume=220&rft.spage=106661&rft.pages=106661-&rft.artnum=106661&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2019.106661&rft_dat=%3Cproquest_cross%3E2306474416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306474416&rft_id=info:pmid/&rft_els_id=S0013794419303005&rfr_iscdi=true