Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects
[Display omitted] •Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affect...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2019-10, Vol.220, p.106661, Article 106661 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106661 |
container_title | Engineering fracture mechanics |
container_volume | 220 |
creator | Nicolas, Andrea Co, Noelle Easter C. Burns, James T. Sangid, Michael D. |
description | [Display omitted]
•Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation.
The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective. |
doi_str_mv | 10.1016/j.engfracmech.2019.106661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306474416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794419303005</els_id><sourcerecordid>2306474416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</originalsourceid><addsrcrecordid>eNqNkEtPxCAUhYnRxHH0P9S47gjl0XZpJr6SSXSha6Q8OtRpqUBN5t9LUxcuXUEO557L-QC4RnCDIGK33UYPrfFC9lruNwVEddIZY-gErFBV4rzEiJ6CFYQo3WtCzsFFCB2EsGQVXIGPV6-VldEObWZEtO2kM5niPjM72GiT4obMeNdn0k3jQaust9K7EP0k4-R1JgaVnnySZmfv_Lh3B9ceM22MljFcgjMjDkFf_Z5r8P5w_7Z9yncvj8_bu10uCa5jLkojaYOZaESZvoyooAoVFLFaqApT2tAaF4IVRhEopBKwKhjCitaNJrQRCq_BzZI7evc16RB55yY_pJW8wJCRkhDEkqteXHOH4LXho7e98EeOIJ-B8o7_AcpnoHwBmma3y6xONb6t9jxIqweZ-PnUlCtn_5HyA5s-hto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306474416</pqid></control><display><type>article</type><title>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</title><source>Elsevier ScienceDirect Journals</source><creator>Nicolas, Andrea ; Co, Noelle Easter C. ; Burns, James T. ; Sangid, Michael D.</creator><creatorcontrib>Nicolas, Andrea ; Co, Noelle Easter C. ; Burns, James T. ; Sangid, Michael D.</creatorcontrib><description>[Display omitted]
•Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation.
The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2019.106661</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Corrosion ; Corrosion effects ; Corrosion fatigue ; Corrosion morphology ; Crack initiation ; Crack propagation ; Crystal plasticity modeling ; Fatigue crack initiation ; Fatigue failure ; Fracture mechanics ; Microstructure ; Morphology ; Railroad accidents & safety ; X-ray computer tomography</subject><ispartof>Engineering fracture mechanics, 2019-10, Vol.220, p.106661, Article 106661</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</citedby><cites>FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794419303005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nicolas, Andrea</creatorcontrib><creatorcontrib>Co, Noelle Easter C.</creatorcontrib><creatorcontrib>Burns, James T.</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><title>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</title><title>Engineering fracture mechanics</title><description>[Display omitted]
•Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation.
The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.</description><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion fatigue</subject><subject>Corrosion morphology</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crystal plasticity modeling</subject><subject>Fatigue crack initiation</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Railroad accidents & safety</subject><subject>X-ray computer tomography</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPxCAUhYnRxHH0P9S47gjl0XZpJr6SSXSha6Q8OtRpqUBN5t9LUxcuXUEO557L-QC4RnCDIGK33UYPrfFC9lruNwVEddIZY-gErFBV4rzEiJ6CFYQo3WtCzsFFCB2EsGQVXIGPV6-VldEObWZEtO2kM5niPjM72GiT4obMeNdn0k3jQaust9K7EP0k4-R1JgaVnnySZmfv_Lh3B9ceM22MljFcgjMjDkFf_Z5r8P5w_7Z9yncvj8_bu10uCa5jLkojaYOZaESZvoyooAoVFLFaqApT2tAaF4IVRhEopBKwKhjCitaNJrQRCq_BzZI7evc16RB55yY_pJW8wJCRkhDEkqteXHOH4LXho7e98EeOIJ-B8o7_AcpnoHwBmma3y6xONb6t9jxIqweZ-PnUlCtn_5HyA5s-hto</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Nicolas, Andrea</creator><creator>Co, Noelle Easter C.</creator><creator>Burns, James T.</creator><creator>Sangid, Michael D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20191015</creationdate><title>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</title><author>Nicolas, Andrea ; Co, Noelle Easter C. ; Burns, James T. ; Sangid, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-a7fc5b36aba773115a5d125169ad8355b5932a62fd40acda082613d59be45bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion fatigue</topic><topic>Corrosion morphology</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crystal plasticity modeling</topic><topic>Fatigue crack initiation</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Railroad accidents & safety</topic><topic>X-ray computer tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas, Andrea</creatorcontrib><creatorcontrib>Co, Noelle Easter C.</creatorcontrib><creatorcontrib>Burns, James T.</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas, Andrea</au><au>Co, Noelle Easter C.</au><au>Burns, James T.</au><au>Sangid, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>220</volume><spage>106661</spage><pages>106661-</pages><artnum>106661</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>[Display omitted]
•Experimental characterizations can be used to generate equivalent computer models.•Fatigue indicator parameters (FIPs) analyzed produce similar spatial fields.•FIPs can adequately predict the location of crack initiation in corroded materials.•The microstructure is vital in affecting the pit-to-crack transition.•Constituent particles play a secondary role in corrosion mediated crack initiation.
The onset of fatigue crack initiation is driven by the microstructure and the corrosion morphology; however, these mechanisms are rarely studied synergistically. In this work, characterizations of the microstructural features and the corrosion morphology resulting from two different environmental exposures are instantiated into crystal plasticity models. Fatigue indicator parameters (FIPs) are calculated from the micromechanical fields to quantify failure. The FIPs compare favorably to predict the experimentally observed location of fatigue crack initiation. These results show the potential behind analyzing environmentally-assisted fatigue crack initiation from a multivariable perspective.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2019.106661</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2019-10, Vol.220, p.106661, Article 106661 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_proquest_journals_2306474416 |
source | Elsevier ScienceDirect Journals |
subjects | Corrosion Corrosion effects Corrosion fatigue Corrosion morphology Crack initiation Crack propagation Crystal plasticity modeling Fatigue crack initiation Fatigue failure Fracture mechanics Microstructure Morphology Railroad accidents & safety X-ray computer tomography |
title | Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20fatigue%20crack%20initiation%20from%20coupled%20microstructure%20and%20corrosion%20morphology%20effects&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Nicolas,%20Andrea&rft.date=2019-10-15&rft.volume=220&rft.spage=106661&rft.pages=106661-&rft.artnum=106661&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2019.106661&rft_dat=%3Cproquest_cross%3E2306474416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306474416&rft_id=info:pmid/&rft_els_id=S0013794419303005&rfr_iscdi=true |