Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells

Low-temperature atomic layer deposition (ALD) offers significant merits in terms of processing uniform, conformal and pinhole-free thin films, with sub-nanometer thickness control. In this work, plasma-assisted atomic layer deposition (ALD) of nickel oxide (NiO) is carried out by adopting bis-methyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (4), p.12532-12543
Hauptverfasser: Koushik, Dibyashree, Jošt, Marko, Du inskas, Algirdas, Burgess, Claire, Zardetto, Valerio, Weijtens, Christ, Verheijen, Marcel A, Kessels, Wilhelmus M. M, Albrecht, Steve, Creatore, Mariadriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12543
container_issue 4
container_start_page 12532
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 7
creator Koushik, Dibyashree
Jošt, Marko
Du inskas, Algirdas
Burgess, Claire
Zardetto, Valerio
Weijtens, Christ
Verheijen, Marcel A
Kessels, Wilhelmus M. M
Albrecht, Steve
Creatore, Mariadriana
description Low-temperature atomic layer deposition (ALD) offers significant merits in terms of processing uniform, conformal and pinhole-free thin films, with sub-nanometer thickness control. In this work, plasma-assisted atomic layer deposition (ALD) of nickel oxide (NiO) is carried out by adopting bis-methylcyclopentadienyl-nickel (Ni(MeCp) 2 ) as precursor and O 2 plasma as co-reactant, over a wide table temperature range of 50-300 °C. A growth rate of 0.32 Å per cycle is obtained for films deposited at 150 °C with an excellent thickness uniformity on a 4 inch silicon wafer. Bulk characteristics of the NiO film together with its interfacial properties with a triple cation hybrid perovskite absorber layer are comprehensively investigated, with the aim of integrating NiO as hole transport layer (HTL) in a p-i-n perovskite solar cell (PSC) architecture. It is concluded that "key" to efficient solar cell performance is the post-annealing treatment of the ALD NiO films in air, prior to perovskite synthesis. Post-annealing leads to better wettability of the perovskite layer and increased conductivity and mobility of the NiO films, delivering an increase in short-circuit current density ( J sc ) and fill factor (FF) in the fabricated devices. Overall, a superior 17.07% PCE is achieved in the post-annealed NiO-based PSC when compared to the 13.98% PCE derived from the one with pristine NiO. Careful interface design and engineering are "keys" to effectively implement a conformal 10 nm plasma-assisted atomic-layer-deposited NiO film as hole transport layer in a p-i-n perovskite solar cell architecture.
doi_str_mv 10.1039/c9tc04282b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306431968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306431968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-fea4073da50d7a6f60b66bc9846eb9048c6f21da1a28ebf819287e4c3b413b193</originalsourceid><addsrcrecordid>eNp9kMtLAzEQhxdRsNRevAsRb8JqHttsctTFFxT0UM9LNg-adrvZZlKx_72rlXpzLjPw-2YGviw7J_iGYCZvtUwaF1TQ5igbUTzFeTllxfFhpvw0mwAs8VCCcMHlKNu8tQrWKlcAHpI1SKWw9hq1amcjMrYP4JMPHQoOdV6vbIvCpzcWKUCL0FqUouqgDzH9rrgQ0WLXRG9Qb2P4gJVPFkFoVUTati2cZSdOtWAnv32cvT8-zKvnfPb69FLdzXLNBE65s6rAJTNqik2puOO44bzRUhTcNhIXQnNHiVFEUWEbJ4ikorSFZk1BWEMkG2dX-7t9DJuthVQvwzZ2w8uaMswLRiQXA3W9p3QMANG6uo9-reKuJrj-tlpXcl79WL0f4Is9HEEfuD_rQ375X173xrEvpNSBDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306431968</pqid></control><display><type>article</type><title>Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells</title><source>Royal Society of Chemistry</source><creator>Koushik, Dibyashree ; Jošt, Marko ; Du inskas, Algirdas ; Burgess, Claire ; Zardetto, Valerio ; Weijtens, Christ ; Verheijen, Marcel A ; Kessels, Wilhelmus M. M ; Albrecht, Steve ; Creatore, Mariadriana</creator><creatorcontrib>Koushik, Dibyashree ; Jošt, Marko ; Du inskas, Algirdas ; Burgess, Claire ; Zardetto, Valerio ; Weijtens, Christ ; Verheijen, Marcel A ; Kessels, Wilhelmus M. M ; Albrecht, Steve ; Creatore, Mariadriana</creatorcontrib><description>Low-temperature atomic layer deposition (ALD) offers significant merits in terms of processing uniform, conformal and pinhole-free thin films, with sub-nanometer thickness control. In this work, plasma-assisted atomic layer deposition (ALD) of nickel oxide (NiO) is carried out by adopting bis-methylcyclopentadienyl-nickel (Ni(MeCp) 2 ) as precursor and O 2 plasma as co-reactant, over a wide table temperature range of 50-300 °C. A growth rate of 0.32 Å per cycle is obtained for films deposited at 150 °C with an excellent thickness uniformity on a 4 inch silicon wafer. Bulk characteristics of the NiO film together with its interfacial properties with a triple cation hybrid perovskite absorber layer are comprehensively investigated, with the aim of integrating NiO as hole transport layer (HTL) in a p-i-n perovskite solar cell (PSC) architecture. It is concluded that "key" to efficient solar cell performance is the post-annealing treatment of the ALD NiO films in air, prior to perovskite synthesis. Post-annealing leads to better wettability of the perovskite layer and increased conductivity and mobility of the NiO films, delivering an increase in short-circuit current density ( J sc ) and fill factor (FF) in the fabricated devices. Overall, a superior 17.07% PCE is achieved in the post-annealed NiO-based PSC when compared to the 13.98% PCE derived from the one with pristine NiO. Careful interface design and engineering are "keys" to effectively implement a conformal 10 nm plasma-assisted atomic-layer-deposited NiO film as hole transport layer in a p-i-n perovskite solar cell architecture.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c9tc04282b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic layer epitaxy ; Box annealing ; Cations ; Circuits ; Copper ; Data analysis ; Interfacial properties ; Nickel oxides ; Perovskites ; Photovoltaic cells ; Pinholes ; Short circuit currents ; Silicon wafers ; Solar cells ; Spectra ; Thickness ; Thin films ; Transportation services ; Wettability</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (4), p.12532-12543</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-fea4073da50d7a6f60b66bc9846eb9048c6f21da1a28ebf819287e4c3b413b193</citedby><cites>FETCH-LOGICAL-c380t-fea4073da50d7a6f60b66bc9846eb9048c6f21da1a28ebf819287e4c3b413b193</cites><orcidid>0000-0002-5318-8954 ; 0000-0002-7609-3544 ; 0000-0003-2754-1467 ; 0000-0002-7630-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Koushik, Dibyashree</creatorcontrib><creatorcontrib>Jošt, Marko</creatorcontrib><creatorcontrib>Du inskas, Algirdas</creatorcontrib><creatorcontrib>Burgess, Claire</creatorcontrib><creatorcontrib>Zardetto, Valerio</creatorcontrib><creatorcontrib>Weijtens, Christ</creatorcontrib><creatorcontrib>Verheijen, Marcel A</creatorcontrib><creatorcontrib>Kessels, Wilhelmus M. M</creatorcontrib><creatorcontrib>Albrecht, Steve</creatorcontrib><creatorcontrib>Creatore, Mariadriana</creatorcontrib><title>Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Low-temperature atomic layer deposition (ALD) offers significant merits in terms of processing uniform, conformal and pinhole-free thin films, with sub-nanometer thickness control. In this work, plasma-assisted atomic layer deposition (ALD) of nickel oxide (NiO) is carried out by adopting bis-methylcyclopentadienyl-nickel (Ni(MeCp) 2 ) as precursor and O 2 plasma as co-reactant, over a wide table temperature range of 50-300 °C. A growth rate of 0.32 Å per cycle is obtained for films deposited at 150 °C with an excellent thickness uniformity on a 4 inch silicon wafer. Bulk characteristics of the NiO film together with its interfacial properties with a triple cation hybrid perovskite absorber layer are comprehensively investigated, with the aim of integrating NiO as hole transport layer (HTL) in a p-i-n perovskite solar cell (PSC) architecture. It is concluded that "key" to efficient solar cell performance is the post-annealing treatment of the ALD NiO films in air, prior to perovskite synthesis. Post-annealing leads to better wettability of the perovskite layer and increased conductivity and mobility of the NiO films, delivering an increase in short-circuit current density ( J sc ) and fill factor (FF) in the fabricated devices. Overall, a superior 17.07% PCE is achieved in the post-annealed NiO-based PSC when compared to the 13.98% PCE derived from the one with pristine NiO. Careful interface design and engineering are "keys" to effectively implement a conformal 10 nm plasma-assisted atomic-layer-deposited NiO film as hole transport layer in a p-i-n perovskite solar cell architecture.</description><subject>Atomic layer epitaxy</subject><subject>Box annealing</subject><subject>Cations</subject><subject>Circuits</subject><subject>Copper</subject><subject>Data analysis</subject><subject>Interfacial properties</subject><subject>Nickel oxides</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Pinholes</subject><subject>Short circuit currents</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Spectra</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transportation services</subject><subject>Wettability</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQhxdRsNRevAsRb8JqHttsctTFFxT0UM9LNg-adrvZZlKx_72rlXpzLjPw-2YGviw7J_iGYCZvtUwaF1TQ5igbUTzFeTllxfFhpvw0mwAs8VCCcMHlKNu8tQrWKlcAHpI1SKWw9hq1amcjMrYP4JMPHQoOdV6vbIvCpzcWKUCL0FqUouqgDzH9rrgQ0WLXRG9Qb2P4gJVPFkFoVUTati2cZSdOtWAnv32cvT8-zKvnfPb69FLdzXLNBE65s6rAJTNqik2puOO44bzRUhTcNhIXQnNHiVFEUWEbJ4ikorSFZk1BWEMkG2dX-7t9DJuthVQvwzZ2w8uaMswLRiQXA3W9p3QMANG6uo9-reKuJrj-tlpXcl79WL0f4Is9HEEfuD_rQ375X173xrEvpNSBDA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Koushik, Dibyashree</creator><creator>Jošt, Marko</creator><creator>Du inskas, Algirdas</creator><creator>Burgess, Claire</creator><creator>Zardetto, Valerio</creator><creator>Weijtens, Christ</creator><creator>Verheijen, Marcel A</creator><creator>Kessels, Wilhelmus M. M</creator><creator>Albrecht, Steve</creator><creator>Creatore, Mariadriana</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5318-8954</orcidid><orcidid>https://orcid.org/0000-0002-7609-3544</orcidid><orcidid>https://orcid.org/0000-0003-2754-1467</orcidid><orcidid>https://orcid.org/0000-0002-7630-8226</orcidid></search><sort><creationdate>2019</creationdate><title>Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells</title><author>Koushik, Dibyashree ; Jošt, Marko ; Du inskas, Algirdas ; Burgess, Claire ; Zardetto, Valerio ; Weijtens, Christ ; Verheijen, Marcel A ; Kessels, Wilhelmus M. M ; Albrecht, Steve ; Creatore, Mariadriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-fea4073da50d7a6f60b66bc9846eb9048c6f21da1a28ebf819287e4c3b413b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic layer epitaxy</topic><topic>Box annealing</topic><topic>Cations</topic><topic>Circuits</topic><topic>Copper</topic><topic>Data analysis</topic><topic>Interfacial properties</topic><topic>Nickel oxides</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Pinholes</topic><topic>Short circuit currents</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Spectra</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transportation services</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koushik, Dibyashree</creatorcontrib><creatorcontrib>Jošt, Marko</creatorcontrib><creatorcontrib>Du inskas, Algirdas</creatorcontrib><creatorcontrib>Burgess, Claire</creatorcontrib><creatorcontrib>Zardetto, Valerio</creatorcontrib><creatorcontrib>Weijtens, Christ</creatorcontrib><creatorcontrib>Verheijen, Marcel A</creatorcontrib><creatorcontrib>Kessels, Wilhelmus M. M</creatorcontrib><creatorcontrib>Albrecht, Steve</creatorcontrib><creatorcontrib>Creatore, Mariadriana</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koushik, Dibyashree</au><au>Jošt, Marko</au><au>Du inskas, Algirdas</au><au>Burgess, Claire</au><au>Zardetto, Valerio</au><au>Weijtens, Christ</au><au>Verheijen, Marcel A</au><au>Kessels, Wilhelmus M. M</au><au>Albrecht, Steve</au><au>Creatore, Mariadriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>4</issue><spage>12532</spage><epage>12543</epage><pages>12532-12543</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Low-temperature atomic layer deposition (ALD) offers significant merits in terms of processing uniform, conformal and pinhole-free thin films, with sub-nanometer thickness control. In this work, plasma-assisted atomic layer deposition (ALD) of nickel oxide (NiO) is carried out by adopting bis-methylcyclopentadienyl-nickel (Ni(MeCp) 2 ) as precursor and O 2 plasma as co-reactant, over a wide table temperature range of 50-300 °C. A growth rate of 0.32 Å per cycle is obtained for films deposited at 150 °C with an excellent thickness uniformity on a 4 inch silicon wafer. Bulk characteristics of the NiO film together with its interfacial properties with a triple cation hybrid perovskite absorber layer are comprehensively investigated, with the aim of integrating NiO as hole transport layer (HTL) in a p-i-n perovskite solar cell (PSC) architecture. It is concluded that "key" to efficient solar cell performance is the post-annealing treatment of the ALD NiO films in air, prior to perovskite synthesis. Post-annealing leads to better wettability of the perovskite layer and increased conductivity and mobility of the NiO films, delivering an increase in short-circuit current density ( J sc ) and fill factor (FF) in the fabricated devices. Overall, a superior 17.07% PCE is achieved in the post-annealed NiO-based PSC when compared to the 13.98% PCE derived from the one with pristine NiO. Careful interface design and engineering are "keys" to effectively implement a conformal 10 nm plasma-assisted atomic-layer-deposited NiO film as hole transport layer in a p-i-n perovskite solar cell architecture.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9tc04282b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5318-8954</orcidid><orcidid>https://orcid.org/0000-0002-7609-3544</orcidid><orcidid>https://orcid.org/0000-0003-2754-1467</orcidid><orcidid>https://orcid.org/0000-0002-7630-8226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (4), p.12532-12543
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2306431968
source Royal Society of Chemistry
subjects Atomic layer epitaxy
Box annealing
Cations
Circuits
Copper
Data analysis
Interfacial properties
Nickel oxides
Perovskites
Photovoltaic cells
Pinholes
Short circuit currents
Silicon wafers
Solar cells
Spectra
Thickness
Thin films
Transportation services
Wettability
title Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-assisted%20atomic%20layer%20deposition%20of%20nickel%20oxide%20as%20hole%20transport%20layer%20for%20hybrid%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Koushik,%20Dibyashree&rft.date=2019&rft.volume=7&rft.issue=4&rft.spage=12532&rft.epage=12543&rft.pages=12532-12543&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c9tc04282b&rft_dat=%3Cproquest_cross%3E2306431968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306431968&rft_id=info:pmid/&rfr_iscdi=true